【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

Description

脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzip = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2; 3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2 就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

Input

第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,

其中 ci 表示购买第 i 件装备的花费。

Output

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费

题解:

这乍一看,似乎没有什么规律,但是,仔细一想,这题跟线性基有点像。

普通的异或线性基是将十进制数转为二进制,将 01 串作为向量,加入线性基,这道题将一个十进制的向量插入线性基。

我们可以用高斯消元消去最高位替代异或,如下:

1 bool insert(Vector x){
2     for(int i=m;i>=1;i--){
3         if(fabs(x.v[i])<eps)continue;
4         if(a[i].empty()){a[i]=x;return true;}
5         double k=x.v[i]/a[i].v[i];
6         for(int j=1;j<=m;j++)x.v[j]-=a[i].v[j]*k;
7         if(x.empty())return false;
8     }
9 }

这同样满足线性基的性质,(感性理解)

COMPLETE  CODE:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cmath>
 5 #include<cstring>
 6 using namespace std;
 7
 8 #define eps 1e-5
 9 int n,m,x,sum,ans;
10 struct Vector{
11     double v[505];
12     int c;
13     bool operator<(const Vector &b)const{
14         return c<b.c;
15     }
16     bool empty(){
17         for(int i=1;i<=m;i++)
18             if(fabs(v[i])>=eps)return false;
19         return true;
20     }
21 }a[505];
22 struct LB{
23     Vector a[505];
24     bool insert(Vector x){
25         for(int i=m;i>=1;i--){
26             if(fabs(x.v[i])<eps)continue;
27             if(a[i].empty()){a[i]=x;return true;}
28             double k=x.v[i]/a[i].v[i];
29             for(int j=1;j<=m;j++)x.v[j]-=a[i].v[j]*k;
30             if(x.empty())return false;
31         }
32     }
33 }lb;
34
35 int main(){
36     scanf("%d%d",&n,&m);
37     for(int i=1;i<=n;i++)
38     for(int j=1;j<=m;j++)scanf("%d",&x),a[i].v[j]=x;
39     for(int i=1;i<=n;i++)scanf("%d",&a[i].c);
40     sort(a+1,a+n+1);
41     for(int i=1;i<=n;i++)
42         if(lb.insert(a[i]))sum++,ans+=a[i].c;
43     printf("%d %d",sum,ans);
44 }

注意!! 这题卡精度!!

原文地址:https://www.cnblogs.com/ezoiLZH/p/9383647.html

时间: 2024-11-05 18:35:49

【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)的相关文章

bzoj4004: [JLOI2015]装备购买 线性基

总之就是线性基那一套贪心理论直接做就好了. 然而加强数据后很卡精度的样子. 于是重点在于这个特技:在整数模意义下搞. #include<cstdio> #include<algorithm> #define N 505 using std::sort; int k,l,m,n,p=1e9+7; int s[N],t[N]; int a[N][N],*v[N]; int pow(int u,int v){ int a=1; for(;v;v>>=1){ if(v&

题解 外星千足虫(线性基+高斯消元)

题解 luogu外星千足虫(线性基+高斯消元) 题目 luogu题目传送门 题解想法 首先需要知道这是个异或方程对吧 然后既然看到位运算,又有这么多,就可以考虑线性基(做题技巧),那我们就丢进去 接下来看一看线性基,哇,性质美妙 它不就是Gauss消元里面想要的上三角矩阵吗 所以说: 如果能拼成线性基,那么枚举到哪里完成了,就输出位置(first_ans) 如果拼不成,那就解不出(毋庸置疑) 那真是美妙啊... 所以怎么消元呢?这可是个异或方程,我们要解出来啊 枚举整个线性基的g[i] 如果g[

【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)

bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每次加入一个线性基时判断是不是全被异或掉了,如果没有,说明这个方程不是冗余的,那么我们可记录非冗余方程个数 如果非冗余方程个数小于\(n\),那就是个不定方程组,有无数种解,否则,在个数第一次达到\(n\)时,就可输出当时输入方程的号码 还有一个点就是压空间与时间,这题主要是时间,用到大杀器\(bit

【BZOJ2844】albus就是要第一个出场 线性基 高斯消元

#include <stdio.h> int main() { puts("转载请注明出处[vmurder]谢谢"); puts("网址:blog.csdn.net/vmurder/article/details/43456773"); } 题意:需要注意的是空集(0)是天生被包括的,我为了这个WA了好久~拍了好久,醉了好久~ 题解: 首先有一个我并不知道是为什么(甚至不知道它对不对)的性质: 每一种权值会出现2的自由元(n-线性基个数)次方 次. 感性

Bzoj4004 [JLOI2015]装备购买

Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1092  Solved: 359 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着 怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买

0x35 高斯消元与线性空间

颓了十天回来做题果然…… 感觉还是很有收获的,这两以前都没学过 bzoj1013: [JSOI2008]球形空间产生器sphere poj1830 异或也可以当作加减那样做的...起始状态异或结束状态就得出答案,设的就是某个灯点不点 #include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmat

【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了.严格的定义是,如果脸哥买了 zi1,...

【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件

[JLOI2015]装备购买(线性基)

[JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ,a_j, \ldots , a_m)\) 表示 \(1 \leq i \leq n\), \(1 \leq j \leq m\),每个装备需要花费 \(c_i\) ,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他