排序和搜索

排序与搜索

排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。

排序算法的稳定性

稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1)  (3, 1)  (3, 7)(5, 6)

在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:

(3, 1)  (3, 7)  (4, 1)  (5, 6)  (维持次序)
(3, 7)  (3, 1)  (4, 1)  (5, 6)  (次序被改变)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

冒泡排序

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

  • 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

冒泡排序的分析

交换过程图示(第一次):

那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:

def bubble_sort(alist):
    for j in range(len(alist)-1,0,-1):
        # j表示每次遍历需要比较的次数,是逐渐减小的
        for i in range(j):
            if alist[i] > alist[i+1]:
                alist[i], alist[i+1] = alist[i+1], alist[i]

li = [54,26,93,17,77,31,44,55,20]
bubble_sort(li)
print(li)

时间复杂度

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

冒泡排序的演示

效果:

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

选择排序分析

排序过程:

红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

def selection_sort(alist):
    n = len(alist)
    # 需要进行n-1次选择操作
    for i in range(n-1):
        # 记录最小位置
        min_index = i
        # 从i+1位置到末尾选择出最小数据
        for j in range(i+1, n):
            if alist[j] < alist[min_index]:
                min_index = j
        # 如果选择出的数据不在正确位置,进行交换
        if min_index != i:
            alist[i], alist[min_index] = alist[min_index], alist[i]

alist = [54,226,93,17,77,31,44,55,20]
selection_sort(alist)
print(alist)

时间复杂度

  • 最优时间复杂度:O(n2)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

选择排序演示

插入排序

插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

插入排序分析

def insert_sort(alist):
    # 从第二个位置,即下标为1的元素开始向前插入
    for i in range(1, len(alist)):
        # 从第i个元素开始向前比较,如果小于前一个元素,交换位置
        for j in range(i, 0, -1):
            if alist[j] < alist[j-1]:
                alist[j], alist[j-1] = alist[j-1], alist[j]

alist = [54,26,93,17,77,31,44,55,20]
insert_sort(alist)
print(alist)

时间复杂度

  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

插入排序演示

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

快速排序的分析

def quick_sort(alist, start, end):
    """快速排序"""

    # 递归的退出条件
    if start >= end:
        return

    # 设定起始元素为要寻找位置的基准元素
    mid = alist[start]

    # low为序列左边的由左向右移动的游标
    low = start

    # high为序列右边的由右向左移动的游标
    high = end

    while low < high:
        # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
        while low < high and alist[high] >= mid:
            high -= 1
        # 将high指向的元素放到low的位置上
        alist[low] = alist[high]

        # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
        while low < high and alist[low] < mid:
            low += 1
        # 将low指向的元素放到high的位置上
        alist[high] = alist[low]

    # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
    # 将基准元素放到该位置
    alist[low] = mid

    # 对基准元素左边的子序列进行快速排序
    quick_sort(alist, start, low-1)

    # 对基准元素右边的子序列进行快速排序
    quick_sort(alist, low+1, end)

alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定

从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

快速排序演示

希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序过程

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以1步长进行排序(此时就是简单的插入排序了)

希尔排序的分析

def shell_sort(alist):
    n = len(alist)
    # 初始步长
    gap = n / 2
    while gap > 0:
        # 按步长进行插入排序
        for i in range(gap, n):
            j = i
            # 插入排序
            while j>=gap and alist[j-gap] > alist[j]:
                alist[j-gap], alist[j] = alist[j], alist[j-gap]
                j -= gap
        # 得到新的步长
        gap = gap / 2

alist = [54,26,93,17,77,31,44,55,20]
shell_sort(alist)
print(alist)

时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n2)
  • 稳定想:不稳定

希尔排序演示

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

归并排序的分析

def merge_sort(alist):
    if len(alist) <= 1:
        return alist
    # 二分分解
    num = len(alist)/2
    left = merge_sort(alist[:num])
    right = merge_sort(alist[num:])
    # 合并
    return merge(left,right)

def merge(left, right):
    ‘‘‘合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组‘‘‘
    #left与right的下标指针
    l, r = 0, 0
    result = []
    while l<len(left) and r<len(right):
        if left[l] < right[r]:
            result.append(left[l])
            l += 1
        else:
            result.append(right[r])
            r += 1
    result += left[l:]
    result += right[r:]
    return result

alist = [54,26,93,17,77,31,44,55,20]
sorted_alist = mergeSort(alist)
print(sorted_alist)

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(nlogn)
  • 稳定性:稳定

常见排序算法效率比较

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

二分法查找实现

(非递归实现)

def binary_search(alist, item):
      first = 0
      last = len(alist)-1
      while first<=last:
          midpoint = (first + last)/2
          if alist[midpoint] == item:
              return True
          elif item < alist[midpoint]:
              last = midpoint-1
          else:
              first = midpoint+1
    return False
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

(递归实现)

def binary_search(alist, item):
    if len(alist) == 0:
        return False
    else:
        midpoint = len(alist)//2
        if alist[midpoint]==item:
          return True
        else:
          if item<alist[midpoint]:
            return binary_search(alist[:midpoint],item)
          else:
            return binary_search(alist[midpoint+1:],item)

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)

原文地址:https://www.cnblogs.com/alexzhang92/p/9374567.html

时间: 2024-11-07 19:16:14

排序和搜索的相关文章

MVC5 + EF6 + Bootstrap3 (11) 排序、搜索、分页

文章来源:Slark.NET-博客园 http://www.cnblogs.com/slark/p/mvc5-ef6-bs3-get-started-pagedlist.html 系列教程:MVC5 + EF6 + Bootstrap3 上一节:MVC5 + EF6 + Bootstrap3 (10) 数据查询页面 源码下载:点我下载 目录 前言 排序 搜索 分页 结尾 前言 上一节我们做到了如下的一个基础查询页面.本节我们向这个页面中加入排序.搜索和分页功能. 排序 从上图中的地址栏中可以看到

数据结构-4-Trie树:应用于统计、排序与搜索 原理详解

Trie树:应用于统计.排序和搜索 1. trie树定义 1.Trie树 (特例结构树) Trie树,又称单词查找树.字典树,是一种树形结构,是一种哈希树的变种,是一种用于快速检索的多叉树结构.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高. Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的. Trie树也有它的缺点,Trie树的内存消耗非

ngTbale真分页实现排序、搜索等功能

一. 真分页表格基础 1. 需求:分页,排序,搜索都是需要发API到服务端. 2. JS实现代码: getStorage是localStorage一个工具方法,可以自己写这个方法. API参数如下: { limit: initItemCountPerPage, index: options1.page, sortKey: options1.sortKey ? encodeURIComponent(options1.sortKey) : '', sortType: options1.sortTyp

go语言的排序和搜索

晚上准备动手写点 go 的程序的时候,想起 go 如何排序的问题.排序 sort 是个基本的操作,当然搜索 search 也是.c 提供一个 qsort 和 bsearch,一个快排一个二分查找,不过是使用起来都不方便: c++ 中的 sort 貌似很不错,因为 c++ 支持泛型(或是说模板),所以很多东西使用起来很方便.go 是通过 sort 包提供排序和搜索,因为 go 暂时不支持泛型(将来也不好说支不支持),所以,go 的 sort 和 search 使用起来跟类型是有关的,或是需要像 c

数据结构与算法 - 排序与搜索

排序与搜索 排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法. 1.冒泡排序 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 冒泡排序算法的运作如下: 比较相邻的元素.如果第一个比第二个大(升序),就

python 排序与搜索

python 排序与搜索 学习了一下排序与搜索,做一下总结.如果那里不对,请多指教. 排序算法:是一种能将一串数据依照特定顺序进行排列的一种算法. 稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序.也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前. 例如   (1,3)(2,3)(1,2)(2,1)进行排序 冒泡排序: 比较相邻的元素.如果第一个比第二个大(升序),就交换他们两个.持续每次对越来越少的元素重复

[算法小练][图][拓扑排序+深度优先搜索] 平板涂色问题

说在前面 本题是一道经典题目,多做经典题目可以节省很多学习时间,比如本题就包含了许多知识:回溯+剪枝+拓扑排序+深度优先搜索.[动态规划方法另作讨论] 关键代码 题: CE数码公司开发了一种名为自动涂色机(APM)的产品.它能用预定的颜色给一块由不同尺寸且互不覆盖的矩形构成的平板涂色. 为了涂色,APM需要使用一组刷子.每个刷子涂一种不同的颜色C.APM拿起一把有颜色C的刷子,并给所有颜色为C且符合下面限制的矩形涂色: 为了避免颜料渗漏使颜色混合,一个矩形只能在所有紧靠它上方的矩形涂色后,才能涂

4-1 排序与搜索

排序与搜索 排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法. 排序算法的稳定性 稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序.也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前. 当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题.然而,假设以下的数对将要以他们的第一个数字来排序. (4, 1) (3, 1) (3, 7)(5, 6) 在这个状

《C算法.第1卷,基础、数据结构、排序和搜索(第三版)》pdf

下载地址:网盘下载 内容简介  · · · · · · <C算法>介绍了当今最重要的算法,共分3卷,<C算法(第1卷):基础.数据结构.排序和摸索>是第1卷.第1卷分4部分.共16章.第一部分"基础知识"(第1-2章)介绍了基本算法分析原理.第二部分"数据结构"(第3-5章)讲解算法分析中必须掌握的数据结构知识.主要包括基本数据结构.抽象数据结构.递归和树.第三部分"排序"(第6-11章)按章节顺序分别讨论了基本排序方法(