QuantLib 金融计算——数学工具之随机数发生器

目录

  • QuantLib 金融计算——数学工具之随机数发生器

    • 概述
    • 伪随机数
    • 正态分布(伪)随机数
    • 拟随机数
      • HaltonRsg
      • SobolRsg
    • 两类随机数的收敛性比较

如果未做特别说明,文中的程序都是 Python3 代码。

QuantLib 金融计算——数学工具之随机数发生器

载入模块

import QuantLib as ql
import scipy

print(ql.__version__)
1.12

概述

随机模拟通常从产生均匀分布的随机数开始。假设 \(X \sim U [0, 1]\) 是均匀分布的随机变量。任意分布的随机数通常需要对 \(X\) 施加某种变换得到,一般情况下是用累积分布函数的逆函数 \(F^{?1}\),\(F^{?1}(X)\) 的分布就是 \(F\)。其他的变换算法可能不需要 \(F^{?1}\),比如用于生成正态分布的 Box Muller 变换算法。

均匀分布的随机数发生器主要分两种:

  • 伪随机数(wiki
  • 拟随机数,也称低偏差序列(wiki

伪随机数

quantlib-python 提供了以下三种均匀分布的(伪)随机数发生器:

  • KnuthUniformRng,高德纳(Knuth)算法
  • LecuyerUniformRng,L‘Ecuyer 算法
  • MersenneTwisterUniformRng,著名的梅森旋转(Mersenne-Twister)算法

随机数发生器的构造函数,

Rng(seed)

其中

  • seed,整数,默认值是 0,作为种子用于初始化相应的确定性序列;

随机数发生器的成员函数:

  • next():返回一个 SampleNumber 对象,作为模拟的结果。
r = rng.next()
v = r.value(r)

用户通过反复调用成员函数 next() 获得一连串的随机数,需要注意的是 r 的类型是 SampleNumber,需要调用 value() 得到对应的浮点数。

例子 1,

def testingRandomNumbers1():
    seed = 1

    unifMt = ql.MersenneTwisterUniformRng(seed)
    unifLec = ql.LecuyerUniformRng(seed)
    unifKnuth = ql.KnuthUniformRng(seed)

    print(‘{0:<25}{1:<25}{2:<25}‘.format(
        ‘Mersenne Twister‘, ‘Lecuyer‘, ‘Knut‘))

    for i in range(10):
        print(‘{0:<25}{1:<25}{2:<25}‘.format(
            unifMt.next().value(),
            unifLec.next().value(),
            unifKnuth.next().value()))

testingRandomNumbers1()
Mersenne Twister         Lecuyer                  Knut
0.41702199855353683      0.2853808990946861       0.4788952510312594
0.9971848082495853       0.2533581892659171       0.7694635535665499
0.7203244894044474       0.09346853100919404      0.47721285286866455
0.9325573613168672       0.6084968907396475       0.15752737762851
0.00011438119690865278   0.90342026007861         0.6065713927733087 

正态分布(伪)随机数

随机模拟中最常见的分布是正态分布,quantlib-python 提供的正态分布随机数发生器有 4 类:

  • CentralLimitABCGaussianRng
  • BoxMullerABCGaussianRng
  • MoroInvCumulativeABCGaussianRng
  • InvCumulativeABCGaussianRng

其中 ABC 特指一种均匀随机数发生器。

具体来讲 4 类发生器分为 12 种:

  • CentralLimitLecuyerGaussianRng
  • CentralLimitKnuthGaussianRng
  • CentralLimitMersenneTwisterGaussianRng
  • BoxMullerLecuyerGaussianRng
  • BoxMullerKnuthGaussianRng
  • BoxMullerMersenneTwisterGaussianRng
  • MoroInvCumulativeLecuyerGaussianRng
  • MoroInvCumulativeKnuthGaussianRng
  • MoroInvCumulativeMersenneTwisterGaussianRng
  • InvCumulativeLecuyerGaussianRng
  • InvCumulativeKnuthGaussianRng
  • InvCumulativeMersenneTwisterGaussianRng

随机数发生器的构造函数:

rng = Rng(seed)
grng = Gaussianrng(rng)

正态分布随机数发生器接受一个对应的均匀分布随机数发生器作为源,以 BoxMullerMersenneTwisterGaussianRng 为例,需要配置一个 MersenneTwisterUniformRng 对象作为随机数的源,使用经典的 Box-Muller 算法得到正态分布随机数。

例子 2,

def testingRandomNumbers2():
    seed = 12324
    unifMt = ql.MersenneTwisterUniformRng(seed)
    bmGauss = ql.BoxMullerMersenneTwisterGaussianRng(unifMt)

    for i in range(5):
        print(bmGauss.next().value())

testingRandomNumbers2()
-1.1756781173398896
0.14110041851886157
1.569582906805544
-0.026736779238941934
-0.8220676600472409

拟随机数

相较于之前描述的“伪”随机数,随机模拟中另一类重要的随机数成为“拟”随机数,也称为低偏差序列。因为收敛性更好,拟随机数通常用于高维随机变量的模拟。quantlib-python 提供的拟随机数有两类,

  • HaltonRsg: Halton 序列
  • SobolRsg: Sobol 序列

HaltonRsg

HaltonRsg 的构造函数,

HaltonRsg(dimensionality,
          seed,
          randomStart,
          randomShift)

其中,

  • dimensionality:整数,设置维度;
  • seed,整数,默认值是 0,作为种子用于初始化相应的确定性序列;
  • randomStart:布尔值,默认是 True,是否随机开始;
  • randomShift:布尔值,默认是 False,是否随机平移。

HaltonRsg 的成员函数,

  • nextSequence():返回一个 SampleRealVector 对象,作为模拟的结果;
  • lastSequence():返回一个 SampleRealVector 对象,作为上一个模拟的结果;
  • dimension():返回维度。

SobolRsg

SobolRsg 的构造函数,

SobolRsg(dimensionality,
         seed,
         directionIntegers=Jaeckel)

其中,

  • dimensionality:整数,设置维度;
  • seed,整数,默认值是 0,作为种子用于初始化相应的确定性序列;
  • directionIntegers,quantlib-python 的内置变量,默认值是 SobolRsg.Jaeckel,用于 Sobol 序列的初始化。

SobolRsg 的成员函数,

  • nextSequence():返回一个 SampleRealVector 对象,作为模拟的结果;
  • lastSequence():返回一个 SampleRealVector 对象,作为上一个模拟的结果;
  • dimension():返回维度。
  • skipTo(n)n 是整数,跳转到抽样结果的第 n 个维度;
  • nextInt32Sequence():返回一个 IntVector 对象。

例子 3,

def testingRandomNumbers4():
    dim = 5
    haltonGen = ql.HaltonRsg(dim)
    sobolGen = ql.SobolRsg(dim)

    sampleHalton = haltonGen.nextSequence().value()
    sampleSobol = sobolGen.nextSequence().value()

    print(‘{0:<25}{1:<25}‘.format(
        ‘Halton‘, ‘Sobol‘))

    for i in range(dim):
        print(‘{0:<25}{1:<25}‘.format(
            sampleHalton[i],
            sampleSobol[i]))

testingRandomNumbers4()
Halton                   Sobol
0.04081786540336907      0.5
0.8535710143553551       0.5
0.69400573329408         0.5
0.818105927979147        0.5
0.878826694887864        0.5  

两类随机数的收敛性比较

最后用一个例子比较两类随机数的收敛性,分别产生正态分布的伪随机数和拟随机数,计算分布的四个统计指标:

  • 均值(理论值等于 0.0);
  • 方差(理论值等于 1.0);
  • 偏度(理论值等于 0.0);
  • 超额峰度(理论值等于 0.0)。
def testingRandomNumbers5():
    sobolGen = ql.SobolRsg(1)

    seed = 12324
    unifMt = ql.MersenneTwisterUniformRng(seed)
    bmGauss = ql.BoxMullerMersenneTwisterGaussianRng(unifMt)

    boxMullerStat = ql.IncrementalStatistics()
    sobolStat = ql.IncrementalStatistics()

    invGauss = ql.MoroInverseCumulativeNormal()

    numSim = 10000

    for j in range(numSim):
        boxMullerStat.add(bmGauss.next().value())
        currSobolNum = sobolGen.nextSequence().value()[0]
        sobolStat.add(invGauss(currSobolNum))

    stats = {
        "BoxMuller Mean:": boxMullerStat.mean(),
        "Sobol Mean:": sobolStat.mean(),
        "BoxMuller Var:": boxMullerStat.variance(),
        "Sobol Var:": sobolStat.variance(),
        "BoxMuller Skew:": boxMullerStat.skewness(),
        "Sobol Skew:": sobolStat.skewness(),
        "BoxMuller Kurtosis:": boxMullerStat.kurtosis(),
        "Sobol Kurtosis:": sobolStat.kurtosis()}

    for k, v in stats.items():
        print(‘{0:>25}{1:>30}‘.format(k, v))

testingRandomNumbers5()
          BoxMuller Mean:          0.005966482725988245
              Sobol Mean:        -0.0002364019095203635
           BoxMuller Var:            1.0166044844467006
               Sobol Var:            0.9986010126883317
          BoxMuller Skew:           0.02100635339070779
              Sobol Skew:        -7.740573185322994e-05
      BoxMuller Kurtosis:           -0.0340476839897507
          Sobol Kurtosis:         -0.020768126049145776

直观上看 Sobol 序列的结果更加接近理论值,这证明使用拟随机数做模拟的收敛速度更好。

原文地址:https://www.cnblogs.com/xuruilong100/p/10125482.html

时间: 2024-10-13 09:06:44

QuantLib 金融计算——数学工具之随机数发生器的相关文章

QuantLib 金融计算——数学工具之求解器

目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之求解器 载入模块 import QuantLib as ql import scipy from scipy.stats import norm print(ql.__version__) 1.12 概述 QuantLib 提供了多种类型的一维求解器,用以求解单

QuantLib 金融计算——基本组件之 Date 类

QuantLib 金融计算--基本组件之 Date 类 QuantLib 将金融领域的日期对象抽象为 Date 类,并提供了丰富的计算函数.需要注意的是,quantlib-python 中的 Date 类并不同于 python 自身包含的 datetime 类,也没有继承关系. 载入 QuantLib: import QuantLib as ql print(ql.__version__) 1.10 Date 对象的构造 Date 对象的构造方式有两种,分别是 Date(serialNumber

QuantLib 金融计算

QuantLib 金融计算 QauntLib 入门 基本组件之 Date 类 基本组件之 Calendar 类 原文地址:https://www.cnblogs.com/xuruilong100/p/8711520.html

QuantLib 金融计算——基本组件之 InterestRate 类

如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--基本组件之 InterestRate 类 围绕收益率展开的若干计算(如计算贴现因子)是固定收益分析中最基础的部分.同时,由于固定收益产品在付息频率.计息方式.天数计算规则等细节方面的多样性,这一块的计算显得更加复杂繁琐.QuantLib 将与收益率有关的计算整合封装在 InterestRate 类,用户所作的只是按照规定配置特定的参数. 载入 QuantLib: import QuantLib as ql p

QuantLib 金融计算——收益率曲线之构建曲线(1)

目录 QuantLib 金融计算--收益率曲线之构建曲线(1) YieldTermStructure DiscountCurve DiscountCurve 对象的构造 ZeroCurve ZeroCurve 对象的构造 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--收益率曲线之构建曲线(1) 理论和实践上有多种方法可以构建与市场一致的收益率曲线,背后的方法论取决于市场上的可获得金融工具的流动性.在构建收益率曲线时有两个选项必须选定好:插值方法和所选的金

QuantLib 金融计算——收益率曲线之构建曲线(2)

目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 FittedBondDiscountCurve FittedBondDiscountCurve 的原理 FittedBondDiscountCurve 的构造 FittingMethod 类 拟合曲线 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--收益率曲线之构建

QuantLib 金融计算——随机过程之概述

目录 QuantLib 金融计算--随机过程之概述 框架 用法与接口 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之概述 载入模块 import QuantLib as ql print(ql.__version__) 1.12 框架 随机过程是金融工程中的一个核心概念,是沟通理论分析和计算实践的枢纽.quantlib-python 提供了一组成体系的类架构用于描述实际中最常见到的几种随机过程,以 1.12 版本为例: C++ 版本的实现提供了

QuantLib 金融计算——基本组件之 ExchangeRateManager 类

目录 QuantLib 金融计算--基本组件之 ExchangeRateManager 类 概述 Money 类中的汇率转换配置 ExchangeRateManager 函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 ExchangeRateManager 类 载入 QuantLib: import QuantLib as ql print(ql.__version__) 1.15 概述 QuantLib 中管理货币之间汇率信息的类是 E

QuantLib 金融计算——收益率曲线之构建曲线(4)

目录 QuantLib 金融计算--收益率曲线之构建曲线(4) 概述 三次样条函数与期限结构 knots 的选择 实现三次样条函数 实现拟合方法 测试 参考文献 如果未做特别说明,文中的程序都是 C++11 代码. QuantLib 金融计算--收益率曲线之构建曲线(4) 本文代码对应的 QuantLib 版本是 1.15.相关源代码可以在 QuantLibEx 找到. 概述 QuantLib 中提供了用三次 B 样条函数拟合期限结构的功能,但是,并未提供使用三次样条函数拟合期限结构的功能.本文