First Knight UVALive - 4297(优化高斯消元解概率dp)

题意: 

一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n)。给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ≤ 4,表示了 (i, j)到 (i+1, j),(i, j+1),(i-1, j),(i, j-1)的概率。一个骑士在 (1, 1),按照给定概率走,每步都于之前无关,问到达 (m, n)的期望步数。

解析;

很容易想到

然后移项  写出行列式

图截自大佬题解

矩阵中 概率为负 1为正 是因为移项

然后从最后一行 向前化简化出上三角行列式就好了

在这个矩阵中,每行的系数都占据了(2m+1)的长度,且以f(i, j)为中心
因此我们在高斯消元的时候,只需要消除后m行中的m个系数

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1700, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, tot;
double p[maxn][maxn];

void gauss()
{
    for(int i = tot, j = tot; i >= 1; i--, j--)
    {
        for(int k1 = i - 1; k1 >= i - m - 1 && k1 >= 1; k1--)
        {
            double f = p[k1][j] / p[i][j];
            for(int k2 = j - 1; k2 >= j - m && k2 >= 1; k2--)
            {
                p[k1][k2] -= f * p[i][k2];
            }
            p[k1][tot + 1] -= f * p[i][tot + 1];
        }
    }
}

int main()
{
    while(cin >> n >> m && n + m)
    {
        tot = n * m;
        double x;
        mem(p, 0);
        for(int k = 0; k < 4; k++)
            for(int i = 1; i <= n; i++)
                for(int j = 1; j <= m; j++)
                {
                    cin >> x;
                    int pos = (i - 1) * m + j;
                    if(k == 0) p[pos][pos] = -1;
                    if(k == 0 && i < n) p[pos][pos + m] = x;
                    else if(k == 1 && j < m) p[pos][pos + 1] = x;
                    else if(k == 2 && i > 1) p[pos][pos - m] = x;
                    else if(k == 3 && j > 1) p[pos][pos - 1] = x;
                }
        for(int i=1; i<=tot; i++) p[i][tot+1] = -1;
        p[tot][tot + 1] = 0;
        gauss();
        printf("%.6f\n", p[1][tot + 1] / p[1][1]);
    }

    return 0;
}

参考:

https://www.cnblogs.com/cjfdf/p/8467655.html

https://www.cnblogs.com/swm8023/archive/2012/09/01/2666303.html

原文地址:https://www.cnblogs.com/WTSRUVF/p/9733289.html

时间: 2024-11-05 20:26:01

First Knight UVALive - 4297(优化高斯消元解概率dp)的相关文章

POJ2947Widget Factory(高斯消元解同模方程)

http://poj.org/problem?id=2947 题目大意:有n 种装饰物,m 个已知条件,每个已知条件的描述如下:p start enda1,a2......ap (1<=ai<=n)第一行表示从星期start 到星期end 一共生产了p 件装饰物(工作的天数为end-start+1+7*x,加7*x 是因为它可能生产很多周),第二行表示这p 件装饰物的种类(可能出现相同的种类,即ai=aj).规定每件装饰物至少生产3 天,最多生产9 天.问每种装饰物需要生产的天数.如果没有解,

【高斯消元解XOR方程】POJ1222-EXTENDED

[题目大意] 有5*6盏灯,每次开/关一个灯,上下左右的灯状态也会反转.问怎么使状态统一? [思路] 典型高斯消元解XOR方程,注意每盏灯要么0次要么1次. 1 #include <iostream> 2 #include <stdio.h> 3 #include <algorithm> 4 #include <set> 5 using namespace std; 6 int a[40][40]; 7 void gauss() 8 { 9 int i,j,

poj1830(高斯消元解mod2方程组)

题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位置对应的方程右边常数项为1,状态相同的位置对于的方程组右边的常数项为0.然后用高斯消元解一下即可.若有唯一解输出1即可,要是存在 k 个变元,则答案为 1 << k, 因为每个变元都有01两种选择嘛- 代码: 1 #include <iostream> 2 #include <s

poj1753(高斯消元解mod2方程组)

题目链接:http://poj.org/problem?id=1753 题意:一个 4*4 的棋盘,初始时上面放满了黑色或白色的棋子.对 (i, j) 位置进行一次操作后 (i, j), (i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1) 位置的棋子会变成原来相反的状态.问最少需要多少步可以将棋盘上的棋子全部变成白色或者黑色. 思路:分别将棋子变成黑色和白色,然后再用高斯消元解,其中步数较小者即为答案. 注意不存在唯一解时需要枚举自由变元来取得最小步数.

【高斯消元解xor方程】BZOJ1923-[Sdoi2010]外星千足虫

[题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出无法确定. [思路] 高斯消元解xor方程组,求最少需要的方程个数或判断无法确定. 无法确定即存在自由元,在每次操作中找1的时候判断一下就好了:最小方程个数,就是记录下每次找到的最小的1的位置,最后输出最大值即可. [错误] 忘记把ans改为-1了(见程序注释) [备注] P.S.我看别人在高斯消元

BZOJ 3563 DZY Loves Chinese / BZOJ 3569 DZY Loves Chinese II 随机化+高斯消元解异或方程组

题目大意:给出一个无向图,问删掉k条边的时候,图是否联通. 思路:虽然我把这两个题放在了一起,但是其实这两个题可以用完全不同的两个解法来解决. 第一个题其实是DZY出错了...把每次的边数也异或了,那就直接用这个性质一个一个往后推就行了..最后一个暴力求一下.. 第二个题才是本意啊. 听到做法的时候我惊呆了.. 首先是将整个图中拆出一个树,那么所有边就分为树边和非树边.将所有非树边都加一个随机权值.树边的权值是所有能够覆盖它的非树边的权值的异或和. 把整个图拆开的充要条件是拆掉一条树边,同时将所

【BZOJ2466】【中山市选2009】树 高斯消元解异或方程组

广告: #include <stdio.h> int main() { puts("转载请注明出处[vmurder]谢谢"); puts("网址:blog.csdn.net/vmurder/article/details/44356273"); } 题解: 参照此题解,也是我写的,俩题一样. [POJ1681]Painter's Problem 高斯消元,求最小∑系数的异或方程组 代码: #include <cmath> #include &

POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1表示按,0表示不按. 思路:每个开关最多只按一次,因为按了2次之后,就会抵消了. 可以从结果出发,也就是全灭状态怎么按能变成初始状态. 用3*3来举个例子,$X\left ( i,j \right )$表示这些开关是按还是不按,那么对于第一个开关,对它有影响的就只有2.4这两个开关,所以它的异或方程

2016 CCPC 网络赛 B 高斯消元 C 树形dp(待补) G 状压dp+容斥(待补) H 计算几何

2016 CCPC 网络赛 A - A water problem 水题,但读题有个坑,输入数字长度很大.. B - Zhu and 772002 题意:给出n个数(给出的每个数的质因子最大不超过2000),选出多个数相乘得b.问有多少种选法让b 为完全平方数. tags:高斯消元,求异或方程组解的个数.   好题 每个数先素数分解开.  对于2000以内的每个素数p[i],这n个数有奇数个p[i]则系数为1,偶数个则系数为0,最后n个数的p[i]系数异或和都要为0才会使得最后的积为完全平方数.