题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4712
因为作为动态DP练习而找到,所以就用动态DP做了,也没管那种二分的方法。
感觉理解似乎加深了。
果然初始权值也都是非负的。
所以 dp[cr] 表示当前子树与自己的叶子都断开了的最小代价,则 dp[cr]=min{ sigma dp[v] , w[cr] }(v是cr的直接孩子)。
但这样的话,修改的时候需要把自己到根的路径都走一遍。不过查询是O(1)的,所以考虑分配一下。
走到根的过程如果是 log 的话就好了。那么不是倍增就是树剖。
考虑用树剖,s[cr] 表示 sigma dp[v] ( v是cr的轻儿子)。这样修改的话只要每次遇到别的重链就改一下它的 s 就行了。
考虑查询,可以从矩阵的角度看:
状态矩阵是2行1列,放 dp[cr] 和 0 ;转移矩阵是2行2列,[0][0]=s[cr],[0][1]=w[cr],[1][0]=0,[1][1]=0。转移的时候是[ i ][ j ]=min( [ i ][ j ] , [ i ][ k ]+[ k ][ j ] )。
于是树剖的线段树维护的就是转移矩阵的乘积,查询一个点到其所在重链底端的一段乘积即可。原本要乘一个状态,但那个是 [0][0]=0,[0][1]=0,所以把2行2列的 [0][0] 和 [0][1] 取个min作为dp[ ]。
然后就能以很慢的速度A了。
或者像这个人这样,好像能快个2504ms。https://www.cnblogs.com/GXZlegend/p/8710445.html
自己生硬地弄2×2矩阵果然不够好吗……这也启示我们,只要是线段树能维护的东西就行,不一定非是矩阵。关键是把轻儿子的信息带在身上,现求重儿子的信息。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define ll long long #define ls Ls[cr] #define rs Rs[cr] using namespace std; const int N=2e5+5,INF=1e9+5; int n,m,hd[N],xnt,to[N<<1],nxt[N<<1],w[N]; int tot,dfn[N],rnk[N],top[N],son[N],siz[N],fa[N],bj[N],Ls[N<<1],Rs[N<<1]; ll dp[N]; ll Mn(ll a,ll b){return a<b?a:b;} struct Matrix{ ll a[2][2]; Matrix(){a[0][0]=a[0][1]=a[1][0]=a[1][1]=INF;} Matrix operator+ (const Matrix &b)const { Matrix c; for(int i=0;i<=1;i++) for(int k=0;k<=1;k++) for(int j=0;j<=1;j++) c.a[i][j]=Mn(c.a[i][j],a[i][k]+b.a[k][j]); return c; } }g[N],t[N<<1]; int rdn() { int ret=0;bool fx=1;char ch=getchar(); while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)fx=0;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘) ret=(ret<<3)+(ret<<1)+ch-‘0‘,ch=getchar(); return fx?ret:-ret; } void add(int x,int y){to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;} void dfs(int cr) { siz[cr]=1; for(int i=hd[cr],v;i;i=nxt[i]) if((v=to[i])!=fa[cr]) { fa[v]=cr; dfs(v); siz[cr]+=siz[v]; siz[v]>siz[son[cr]]?son[cr]=v:0; } } void dfsx(int cr) { dfn[cr]=++tot; rnk[tot]=cr; dp[cr]=w[cr]; ll tmp=0; if(son[cr])top[son[cr]]=top[cr],dfsx(son[cr]); g[cr].a[0][0]=INF; g[cr].a[0][1]=w[cr]; g[cr].a[1][0]=g[cr].a[1][1]=0; if(!son[cr]){bj[top[cr]]=dfn[cr];return;} for(int i=hd[cr],v;i;i=nxt[i]) if((v=to[i])!=fa[cr]&&v!=son[cr]) { top[v]=v;dfsx(v); tmp+=dp[v]; } g[cr].a[0][0]=tmp; dp[cr]=Mn(w[cr],tmp+dp[son[cr]]); } void build(int l,int r,int cr) { if(l==r){t[cr]=g[rnk[l]];return;} int mid=l+r>>1; ls=++tot; build(l,mid,ls); rs=++tot; build(mid+1,r,rs); t[cr]=t[ls]+t[rs]; } void updt(int l,int r,int cr,int p) { if(l==r){t[cr]=g[rnk[l]];return;} int mid=l+r>>1; if(p<=mid)updt(l,mid,ls,p); else updt(mid+1,r,rs,p); t[cr]=t[ls]+t[rs]; } Matrix query(int l,int r,int cr,int L,int R) { if(l>=L&&r<=R)return t[cr]; int mid=l+r>>1; if(R<=mid)return query(l,mid,ls,L,R); if(mid<L)return query(mid+1,r,rs,L,R); return query(l,mid,ls,L,R)+query(mid+1,r,rs,L,R); } Matrix calc(int cr){ return query(1,n,1,dfn[cr],bj[cr]);} void cz(int x,int y) { g[x].a[0][1]+=y; Matrix k1=calc(top[x]); updt(1,n,1,dfn[x]); Matrix k2=calc(top[x]); while(fa[top[x]]) { g[fa[top[x]]].a[0][0]+=Mn(k2.a[0][0],k2.a[0][1])-Mn(k1.a[0][0],k1.a[0][1]); x=fa[top[x]]; k1=calc(top[x]); updt(1,n,1,dfn[x]); k2=calc(top[x]); } } int main() { n=rdn();for(int i=1;i<=n;i++)w[i]=rdn(); for(int i=1,u,v;i<n;i++) { u=rdn(); v=rdn(); add(u,v); add(v,u); } dfs(1); top[1]=1; dfsx(1); tot=1; build(1,n,1); m=rdn(); char ch[5]; for(int i=1,x,y;i<=m;i++) { scanf("%s",ch); if(ch[0]==‘C‘) { x=rdn(); y=rdn(); cz(x,y); } else { x=rdn(); Matrix d=query(1,n,1,dfn[x],bj[top[x]]); printf("%lld\n",Mn(d.a[0][0],d.a[0][1])); } } return 0; }
原文地址:https://www.cnblogs.com/Narh/p/10004192.html