【bzoj3717】[PA2014]Pakowanie 状压dp

题目描述

你有n个物品和m个包。物品有重量,且不可被分割;包也有各自的容量。要把所有物品装入包中,至少需要几个包?

输入

第一行两个整数n,m(1<=n<=24,1<=m<=100),表示物品和包的数量。
第二行有n个整数a[1],a[2],…,a[n](1<=a[i]<=10^8),分别表示物品的重量。
第三行有m个整数c[1],c[2],…,c[m](1<=c[i]<=10^8),分别表示包的容量。

输出

如果能够装下,输出一个整数表示最少使用包的数目。若不能全部装下,则输出NIE。

样例输入

4 3
4 2 10 3
11 18 9

样例输出

2



题解

状压dp

首先如果有解,则最多使用 $n$ 个背包,即背包数目是 $n$ 级别的,而且一定是优先选择容量最大的背包。

而按照一定的顺序装包时,选择数目较少的背包一定更优。

因此对所有背包按照容量从大到小排序,设 $f[i]$ 表示装集合 $i$ 的物品最少需要使用多少个背包, $g[i]$ 表示使用最少背包的情况下最大的剩余容量。

于是可以直接枚举每次选择的是什么物品,判断装的情况即可。

注意判断无解的情况。

时间复杂度 $O(2^n·n)$ ,由于实现有90s因此可以通过本题。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[24] , c[100] , f[1 << 24] , g[1 << 24];
bool cmp(int a , int b)
{
	return a > b;
}
int main()
{
	int n , m , i , j;
	scanf("%d%d" , &n , &m);
	for(i = 0 ; i < n ; i ++ ) scanf("%d" , &a[i]);
	for(i = 0 ; i < m ; i ++ ) scanf("%d" , &c[i]);
	sort(c , c + m , cmp);
	memset(f , 0x3f , sizeof(f)) , f[0] = -1;
	for(i = 1 ; i < (1 << n) ; i ++ )
	{
		for(j = 0 ; j < n ; j ++ )
		{
			if(i & (1 << j))
			{
				if(g[i ^ (1 << j)] >= a[j] && (f[i ^ (1 << j)] < f[i] || (f[i ^ (1 << j)] == f[i] && g[i ^ (1 << j)] - a[j] > g[i])))
					f[i] = f[i ^ (1 << j)] , g[i] = g[i ^ (1 << j)] - a[j];
				if(f[i ^ (1 << j)] + 1 < m && c[f[i ^ (1 << j)] + 1] >= a[j] && (f[i ^ (1 << j)] + 1 < f[i] || (f[i ^ (1 << j)] + 1 == f[i] && c[f[i ^ (1 << j)] + 1] - a[j] > g[i])))
					f[i] = f[i ^ (1 << j)] + 1 , g[i] = c[f[i ^ (1 << j)] + 1] - a[j];
			}
		}
	}
	if(f[(1 << n) - 1] == 0x3f3f3f3f) puts("NIE");
	else printf("%d\n" , f[(1 << n) - 1] + 1);
}
时间: 2024-10-04 14:34:25

【bzoj3717】[PA2014]Pakowanie 状压dp的相关文章

[bzoj3717][PA2014]Pakowanie_动态规划_状压dp

Pakowanie bzoj-3717 PA-2014 题目大意:给你n个物品m个包,物品有体积包有容量,问装下这些物品最少用几个包. 注释:$1\le n\le 24$,$1\le m\le 100$ 想法:以为是什么超级牛逼的背包dp,结果就是状压dp 状态:f[s]表示装s状态的物品需要多少背包,g[s]表示在f[s]的前提下,最大的背包剩余的容量. 转移:直接判断最后一个能不能装下当前物品,转移即可. 还有就是这个题卡常,只能直接用Lowbit枚举1,不能全枚举,会T... ... 最后

ZOJ3305Get Sauce 状压DP,

状压DP的题目留个纪念,首先题意一开始读错了,搞了好久,然后弄好了,觉得DFS可以,最后超时,修改了很久还是超时,没办法看了一下n的范围,然后觉得状压可以,但是没有直接推出来,就记忆化搜索了一下,可是一直错,莫名奇妙,然后没办法看了一下题解,发现了下面这个比较好的方法,然后按照这个方程去推,然后敲,也是WA了好多把,写的太搓了,没人家的清楚明了,唉~也算是给自己留个纪念,状压一直做的都不太好~唉~还好理解了, 参考了  http://blog.csdn.net/nash142857/articl

poj 2411 Mondriaan&#39;s Dream(状压DP)

Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12232   Accepted: 7142 Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series

(状压dp)uva 10817 Headmaster&#39;s Headache

题目地址 1 #include <bits/stdc++.h> 2 typedef long long ll; 3 using namespace std; 4 const int MAX=1e5+5; 5 const int INF=1e9; 6 int s,m,n; 7 int cost[125]; 8 //char sta[MAX]; 9 string sta; 10 int able[125]; 11 int dp[125][1<<8][1<<8]; 12 in

HDU5816 Hearthstone(状压DP)

题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an online collectible card game from Blizzard Entertainment. Strategies and luck are the most important factors in this game. When you suffer a desperate situation an

HDU 4336 容斥原理 || 状压DP

状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示什么都不取得概率,p(x1)表示的是取x1的概率,最后要加一因为有又多拿了一次.整理一下就可以了. 1 #include <cstdio> 2 const int Maxn=23; 3 double F[1<<Maxn],p[Maxn]; 4 int n; 5 int main() 6

Travel(HDU 4284状压dp)

题意:给n个城市m条路的网图,pp在城市1有一定的钱,想游览这n个城市(包括1),到达一个城市要一定的花费,可以在城市工作赚钱,但前提有工作证(得到有一定的花费),没工作证不能在该城市工作,但可以走,一个城市只能工作一次,问pp是否能游览n个城市回到城市1. 分析:这个题想到杀怪(Survival(ZOJ 2297状压dp) 那个题,也是钱如果小于0就挂了,最后求剩余的最大钱数,先求出最短路和 Hie with the Pie(POJ 3311状压dp) 送披萨那个题相似. #include <

BZOJ 1087: [SCOI2005]互不侵犯King( 状压dp )

简单的状压dp... dp( x , h , s ) 表示当前第 x 行 , 用了 h 个 king , 当前行的状态为 s . 考虑转移 : dp( x , h , s ) = ∑ dp( x - 1 , h - cnt_1( s ) , s' ) ( s and s' 两行不冲突 , cnt_1( s ) 表示 s 状态用了多少个 king ) 我有各种预处理所以 code 的方程和这有点不一样 ------------------------------------------------

BZOJ 1072 排列 状压DP

题意:链接 方法:状压DP? 题解:这题其实没啥好写的,不算很难,推一推就能搞出来. 首先看到这个问题,对于被d整除这个条件,很容易就想到是取余数为0,所以想到可能状态中刚开始含有取余数. 先说我的第一个想法,f[i][j]表示选取i个数且此时的mod为j,这样的思想是第一下蹦出来的,当时想的就是在线来搞最终的答案.不过转瞬即发现,这TM不就是暴力吗魂淡!并没有什么卵用,于是开始想这个状态可不可以做什么优化. 显然第二维的j并不需要太大的优化,暂且先将其搁置一边,来考虑第一维的i怎么优化. 把滚