【网络流24题9】方格取数问题

题面戳我
题目描述
在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。对于给定的方格棋盘,按照取数要求编程找出总和最大的数。
输入格式:
第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数。接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数。
输出格式:
程序运行结束时,将取数的最大总和输出
输入输出样例
输入样例#1:

3 3
1 2 3
3 2 3
2 3 1 

输出样例#1:

11

说明
m,n<=100

sol

最大独立集=\(\sum\)点权-最小顶点覆盖
观察图可知这是一个二分图(按横纵坐标之和的奇偶分成两边)
所以二分图的最小顶点覆盖就是最小割
(可以理解为,每一条边设为\(inf\),那么边两端的点就至少有一个要被割掉,满足最小顶点覆盖的定义)
最小割=最大流

code

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
#define inf 1000000000
const int _ = 100005;
struct edge{int to,next,w;}a[_<<1];
int n,m,s,t,head[_],cnt=1,dep[_],cur[_],sum,ans;
queue<int>Q;
void link(int u,int v,int w)
{
    a[++cnt]=(edge){v,head[u],w};
    head[u]=cnt;
    a[++cnt]=(edge){u,head[v],0};
    head[v]=cnt;
}
bool bfs()
{
    memset(dep,0,sizeof(dep));
    dep[s]=1;Q.push(s);
    while (!Q.empty())
    {
        int u=Q.front();Q.pop();
        for (int e=head[u];e;e=a[e].next)
            if (a[e].w&&!dep[a[e].to])
                dep[a[e].to]=dep[u]+1,Q.push(a[e].to);
    }
    return dep[t];
}
int dfs(int u,int flow)
{
    if (u==t)
        return flow;
    for (int &e=cur[u];e;e=a[e].next)
        if (a[e].w&&dep[a[e].to]==dep[u]+1)
        {
            int temp=dfs(a[e].to,min(flow,a[e].w));
            if (temp) {a[e].w-=temp;a[e^1].w+=temp;return temp;}
        }
    return 0;
}
int main()
{
    scanf("%d%d",&n,&m);s=n*m+1;t=s+1;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            int val;scanf("%d",&val);
            if ((i+j)&1)
            {
                link(s,i*m-m+j,val);
                if (i>1) link(i*m-m+j,i*m-2*m+j,inf);
                if (i<n) link(i*m-m+j,i*m+j,inf);
                if (j>1) link(i*m-m+j,i*m-m+j-1,inf);
                if (j<m) link(i*m-m+j,i*m-m+j+1,inf);
            }
            else link(i*m-m+j,t,val);
            sum+=val;
        }
    while (bfs())
    {
        for (int i=t;i;i--) cur[i]=head[i];
        while (int temp=dfs(s,inf)) ans+=temp;
    }
    printf("%d\n",sum-ans);
    return 0;
} 

原文地址:https://www.cnblogs.com/zhoushuyu/p/8185164.html

时间: 2024-10-18 18:46:53

【网络流24题9】方格取数问题的相关文章

LiberOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 在一个有 m×n m \times nm×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意 2 22 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法. 输入格式 文件第 1 11 行有 2 22 个正整数 m mm 和 n nn,分别表示棋盘的行数和列数

线性规划与网络流24题●09方格取数问题&amp;13星际转移问题

●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为"技术"不佳,搞了一上午) ●09方格取数问题(codevs1907  方格取数3) 想了半天,也没成功建好图: 无奈下参考题解,说是本题要求二分图点权最大独立集,然后可以由结论:"最大点权独立集 = 所有点权 - 最小点权覆盖集 = 所有点权 - 最小割集 = 所有点权 - 网络最大流"转化到求最大流(我真的很懵逼,但又感觉很有道理): 下面附上solution:(自己领悟吧) (不懂

【网络流24题】方格取数问题

Description 在一个有m * n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方格棋盘,按照取数要求编程找出总和最大的数. Input 第1 行有2 个正整数m和n,分别表示棋盘的行数和列数. 接下来的m行,每行有n个正整数,表示棋盘方格中的数. Output 将取数的最大总和输出 Sample Input 3 3 1 2 3 3 2 3 2 3 1 Sample Output

「网络流 24 题」方格取数

大意: 给定$n*m$棋盘, 每个格子有权值, 不能选择相邻格子, 求能选出的最大权值. 二分图带权最大独立集, 转化为最小割问题. S与$X$连边权为权值的边, $X$与$Y$之间连$INF$, $Y$与$T$连边权为权值的边. 则最大权值为总权值-最小割. 残量网络中与$S$相连的或与$T$相连的表示选择, 否则表示不选. #include <iostream> #include <sstream> #include <algorithm> #include <

【网络流】hdu 1569 方格取数(2)

/* 和1565一样: 总点数的权 - 最小覆盖点集 = 最大独立集 -------------------------------------- void add(int u, int v, int f)加边 { e[ct].u = u; e[ct].v = v; e[ct].f = f; next[ct] = first[u]; first[u] = ct++; e[ct].u = v; e[ct].v = u; e[ct].f = 0; next[ct] = first[v]; first

734. [网络流24题] 方格取数问题 二分图点权最大独立集/最小割/最大流

?问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.?编程任务:对于给定的方格棋盘,按照取数要求编程找出总和最大的数.?数据输入:由文件grid.in提供输入数据.文件第1 行有2 个正整数m和n,分别表示棋盘的行数和列数.接下来的m行,每行有n个正整数,表示棋盘方格中的数. [问题分析] 二分图点权最大独立集,转化为最小割模型,从而用最大流解决. [建模方法] 首先把棋盘黑白

线性规划与网络流9 方格取数

算法实现题 8-9 方格取数问题(习题 8-20)?问题描述:在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.?编程任务:对于给定的方格棋盘,按照取数要求编程找出总和最大的数.?数据输入:由文件 input.txt 提供输入数据.文件第 1 行有 2 个正整数 m和 n,分别表示棋盘的行数和列数.接下来的 m行,每行有 n 个正整数,表示棋盘方格中的数.?结果输出:程序运行结束时,

「网络流24题」 9. 方格取数问题

「网络流24题」 9. 方格取数问题 <题目链接> 二分图的最大点权独立集 建立二分图,使得每个点与其相邻的点在不同的部. 源向X部引有向边,Y部向汇引有向边,边权为点权. X部每个点到其相邻的点引有向边,边权INF,这个边的两个断电不能同时被选. 那么S-X-Y-T的任意一条增广路都表示选了两个相邻的点. 于是问题转化为求网络最小割. 最终的答案为所有点的点权和(先都选上)减去网络最小割(不能选的最小点权集). #include <algorithm> #include <

网络流 24题 方格取数

方格取数问题 题目描述 在一个有m*n个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法. 输入格式 文件第1行有2个正整数m和n,分别表示棋盘的行数和列数.接下来的m行,每行有n个正整数,表示棋盘方格中的数.(0 <= m, n <= 30) 输出格式 取数的最大总和. 输入样例 33 1 2 3 3 2 3 2 3 1 输出样例 11 题目大意:     给出m*n的格子,相邻的格子的值不可同时取,最

hdu 1565 方格取数(2)(网络流之最大点权独立集)

题目链接:hdu 1565 方格取数(2) 题意: 有一个n*m的方格,每个方格有一个数,现在让你选一些数.使得和最大. 选的数不能有相邻的. 题解: 我们知道对于普通二分图来说,最大独立点集 + 最小点覆盖集 = 总点数,类似的,对于有权的二分图来说,有: 最大点权独立集 + 最小点权覆盖集 = 总点权和, 这个题很明显是要求 最大点权独立集 ,现在 总点权 已知,我们只要求出来 最小点权覆盖集 就好了,我们可以这样建图, 1,对矩阵中的点进行黑白着色(相邻的点颜色不同),从源点向黑色的点连一