中文文本分类器训练集

中文文本分类器训练集的相关文章

word2vec词向量训练及中文文本相似度计算

本文是讲述如何使用word2vec的基础教程,文章比较基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简单介绍 参考:<Word2vec的核心架构及其应用 · 熊富林,邓怡豪,唐晓晟 · 北邮2015年> <Word2vec的工作原理及应用探究 · 周练 · 西安电子科技大学

中文文本分类

本文介绍文本挖掘与文本分类的一些基本概念和流程,为后续学习分类算法做好铺垫. 一. 文本挖掘的概念 文本挖掘(Text Mining)是从非结构化文本信息中获取用户感兴趣或者有用的模式 的过程.其中被普遍认可的文本挖掘定义如下:文本挖掘是指从大量文本数据中抽取事先未知的.可理解的.最终可用的知识的过程,同时运用这些知识更好地组织信息以便将来参考. 简言之,文本挖掘就是从非结构化的文本中寻找知识的过程. 文本挖掘的七个主要领域: (1)搜索和信息检索(IR):存储和文本文档的检索,包括搜索引擎和关

中文文本分类大概的步骤

文本分类问题:给定文档p(可能含有标题t),将文档分类为n个类别中的一个或多个 文本分类应用:常见的有垃圾邮件识别,情感分析 文本分类方向:主要有二分类,多分类,多标签分类 文本分类方法:传统机器学习方法(贝叶斯,svm等),深度学习方法(fastText,TextCNN等) 文本分类的处理大致分为文本预处理.文本特征提取.分类模型构建等.和英文文本处理分类相比,中文文本的预处理是关键技术. 一.中文分词:针对中文文本分类时,很关键的一个技术就是中文分词.特征粒度为词粒度远远好于字粒度,其大部分

2.中文文本分类

这这一篇博客中,将系统介绍中文文本分类的流程和相关算法.先从文本挖掘的大背景开始,以文本分类算法为中心,介绍中文文本分类项目的流程以及相关知识,知识点设计中文分词,向量空间模型,TF-IDF方法,几个典型的文本分类算法和评价指标等. 本篇主要有: 朴素的贝叶斯算法 KNN最近邻算法. 2.1 文本挖掘与文本分类的概念 简单来说,文本挖掘就是从已知的大量文本数据中提取一些未知的最终可能用过的知识的过程,也就是从非结构化的文本中寻找知识的过程.文本挖掘主要领域有: 搜索和信息检索:存储和文本文档的检

从n-gram中文文本纠错到中文语法纠错以及同义词聚类

前记 本文简单地讲解如何使用n-gram模型结合汉字拼音来作中文错别字纠错,然后介绍最短编辑距离在中文搜索纠错方面的应用:最后从依赖树入手讲解如何作文本长距离纠错(语法纠错),并从该方法中得到一种启示,利用依赖树的特点结合ESA算法来做同义词的聚类. n-gram模型 在中文错别字查错情景中,我们判断一个句子是否合法可以通过计算它的概率来得到,假设一个句子S = {w1, w2, ..., wn},则问题可以转换成如下形式: P(S)被称为语言模型,即用来计算一个句子合法概率的模型. 但是使用上

使用gensim和sklearn搭建一个文本分类器(一):文档向量化

总的来讲,一个完整的文本分类器主要由两个阶段,或者说两个部分组成:一是将文本向量化,将一个字符串转化成向量形式:二是传统的分类器,包括线性分类器,SVM, 神经网络分类器等等. 之前看的THUCTC的技术栈是使用 tf-idf 来进行文本向量化,使用卡方校验(chi-square)来降低向量维度,使用liblinear(采用线性核的svm) 来进行分类.而这里所述的文本分类器,使用lsi (latent semantic analysis, 隐性语义分析) 来进行向量化, 不需要降维, 因为可以

中文文本分类1

文本挖掘(Text Mining)是从非结构化文本信息中获取用户感兴趣或者有用的模式的过程. 文本挖掘是指从大量文本数据中抽取事先未知的.可理解的.最终可用的知识的过程,同时运用这些知识更好地组织信息以便将来参考. 文本预处理 文本处理的核心任务是把非结构化和半结构化的文本转换为结构化的形式,即向量空间模型. 具体步骤: 1. 选择处理的文本范围 选择恰当的范围取决于文本挖掘任务的目标: 对于分类或聚类的任务,往往把整个文档作为处理单位: 对于情感分析.文档自动摘要或信息检索,段落或章节可能更合

级联分类器训练-----OpenCV

关键词:级联分类器.opencv_traincascade 下面简述操作过程: 准备正负样本:neg.pos 正负样本路径生成:dir /a/b>path.txt //path:pos or neg 正样本训练集生成:opencv_createsamples.exe -info pos\pos.txt -vec pos\pos.vec -num 799 -w 24 -h 24  pause 样本训练:opencv_traincascade.exe -data data -vec pos/pos.

基于汉字字频特征实现99.99%准确率的新闻文本分类器(四)

基于汉字字频特征实现99.99%准确率的新闻文本分类器(一) 基于汉字字频特征实现99.99%准确率的新闻文本分类器(二) 基于汉字字频特征实现99.99%准确率的新闻文本分类器(三) 基于汉字字频特征实现99.99%准确率的新闻文本分类器(四) 回顾 上一节中,使用五层神经网络,对抽取出的汉字字频特征向量进行分类,得到了超过99%的准确率,在高准确率的前提下,没有陷入局部最优解,对一些在训练中,被指定了上千次不是军事类的新闻,只要内容是军事类的,就能被正确的找出,同样,混在军事类新闻里的[慈善