【POJ】2942 Knights of the Round Table(双连通分量)

http://poj.org/problem?id=2942

各种逗。。。。

翻译白书上有;看了白书和网上的标程,学习了。。orz。

强连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果这个是割点那么子树就都是强连通分量,然后本题求的是奇圈,那么就进行黑白染色,判断是否为奇圈即可。将不是奇圈的所有强连通分量的点累计起来即可。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
#include <vector>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << ‘\t‘; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

const int N=1005, M=1000005;
int ihead[N], n, m, cnt, LL[N], FF[N], mp[N][N], tot, s[M<<1], top, vis[N], ok[N], col[N];
struct ED { int from, to, next; } e[M<<1];
void add(int u, int v) {
	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u;
	e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v;
}
bool ifind(int u) {
	int v;
	for(int i=ihead[u]; i; i=e[i].next) if(vis[v=e[i].to]) {
		if(col[v]==-1) { col[v]=!col[u]; return ifind(v); }
		else if(col[v]==col[u]) return true;
	}
	return false;
}
void color(int x) {
	int y, u=e[x].from;
	CC(vis, 0); CC(col, -1); col[u]=0;
	do {
		y=s[top--];
		vis[e[y].from]=vis[e[y].to]=1;
	} while(y!=x);
	if(ifind(u)) for1(i, 1, n) if(vis[i]) ok[i]=1;
}
void tarjan(int u, int fa) {
	FF[u]=LL[u]=++tot;
	for(int i=ihead[u]; i; i=e[i].next) if(fa!=e[i].to) {
		int v=e[i].to;
		if(!FF[v]) {
			s[++top]=i; //入栈这里要注意。。不要在上边入栈。。
			tarjan(v, u);
			if(LL[v]>=FF[u]) color(i);
			LL[u]=min(LL[u], LL[v]);
		}
		else if(LL[u]>FF[v]) s[++top]=i, LL[u]=FF[v]; //入栈这里要注意。。
	}
}
int main() {
	while(1) {
		read(n); read(m); int ans=0;
		if(n==0 && m==0) break;
		CC(mp, 0); CC(ihead, 0); CC(LL, 0); CC(FF, 0); CC(ok, 0); top=cnt=tot=0;
		rep(i, m) {
			int u=getint(), v=getint();
			mp[u][v]=mp[v][u]=1;
		}
		for1(i, 1, n) for1(j, i+1, n) if(!mp[i][j]) add(i, j);
		for1(i, 1, n) if(!FF[i]) tarjan(i, -1);
		for1(i, 1, n) if(!ok[i]) ++ans;
		printf("%d\n", ans);
	}
	return 0;
}


Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially
after a couple of drinks. After some unfortunate accidents, King Arthur
asked the famous wizard Merlin to make sure that in the future no fights
break out between the knights. After studying the problem carefully,
Merlin realized that the fights can only be prevented if the knights are
seated according to the following two rules:

  • The knights should
    be seated such that two knights who hate each other should not be
    neighbors at the table. (Merlin has a list that says who hates whom.)
    The knights are sitting around a roundtable, thus every knight has
    exactly two neighbors.
  • An odd number of knights should sit
    around the table. This ensures that if the knights cannot agree on
    something, then they can settle the issue by voting. (If the number of
    knights is even, then itcan happen that ``yes" and ``no" have the same
    number of votes, and the argument goes on.)

Merlin will let
the knights sit down only if these two rules are satisfied, otherwise he
cancels the meeting. (If only one knight shows up, then the meeting is
canceled as well, as one person cannot sit around a table.) Merlin
realized that this means that there can be knights who cannot be part of
any seating arrangements that respect these rules, and these knights
will never be able to sit at the Round Table (one such case is if a
knight hates every other knight, but there are many other possible
reasons). If a knight cannot sit at the Round Table, then he cannot be a
member of the Knights of the Round Table and must be expelled from the
order. These knights have to be transferred to a less-prestigious order,
such as the Knights of the Square Table, the Knights of the Octagonal
Table, or the Knights of the Banana-Shaped Table. To help Merlin, you
have to write a program that will determine the number of knights that
must be expelled.

Input

The
input contains several blocks of test cases. Each case begins with a
line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The
number n is the number of knights. The next m lines describe which
knight hates which knight. Each of these m lines contains two integers
k1 and k2 , which means that knight number k1 and knight number k2 hate
each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, ‘scanf‘ recommended to avoid TLE.

Source

Central Europe 2005

时间: 2024-10-06 05:13:55

【POJ】2942 Knights of the Round Table(双连通分量)的相关文章

POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条件表示2个人直接有矛盾 思路:求补图  能够坐在一起 就是能够相邻的人建一条边 然后假设在一个奇圈上的都是满足的 那些不再不论什么一个奇圈的就是不满足 求出全部奇圈上的点 总数减去它就是答案 首先有2个定理 1.一个点双连通分量是二分图 你就没有奇圈 假设有奇圈  那就不是二分图  充分必要条件 所

POJ 2942 - Knights of the Round Table(双连通图 Tarjan + 二分判定)

POJ 2942 - Knights of the Round Table(双连通图 Tarjan + 二分判定) ACM 题目地址: POJ 2942 - Knights of the Round Table 题意: 有N个骑士,给出某些骑士之间的仇恨关系,骑士们开会时会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件: 任意相互憎恨的两个骑士不能相邻 开会人数为大于2的奇数 若某个骑士任何会议都不能参加,那么就必须将他踢出,给出骑士之间的仇恨关系,问最少需要踢出多少个骑士? 分析: 把

POJ 2942 Knights of the Round Table (点-双连通分量 + 交叉法染色判二分图)

POJ 2942 Knights of the Round Table 链接:http://poj.org/problem?id=2942 题意:亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突,并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: 1. 相互憎恨的两个骑士不能坐在直接相邻的2个位置: 2. 出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果. 如果出现有某些骑士无法出席所有会议(例如这个骑士憎恨所有的其他骑士),则亚瑟王为了世界和

poj 2942 Knights of the Round Table 【双连通缩点+判奇圈】【经典】

题目:poj 2942 Knights of the Round Table 题意:n个骑士经常一起开会,其中有一些两两相互憎恨,他们不能同一桌,开会要表决一些事情,所以必须奇数个人,最少3个,求永远也参加不了会议的人的个数. 分析:这个题目两点 首先,建图求双连通缩点 建图的话,因为相互憎恨的不能再一块,所以要建补图,让能够在一起的所有的连接,这样的话,如果能存在环且环上的点是奇数个的话就可以参加会议,标记求不能参加的即可. 建好图之后用tarjan算法双连通缩点,把在一个环上的点保存起来.

poj 2942 Knights of the Round Table - Tarjan

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has e

poj 2942 Knights of the Round Table(无向图的双连通分量+二分图判定)

#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #

POJ 2942 Knights of the Round Table (点双连通分量,偶图判定)

题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台.给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人开多个会不冲突)? 分析: 给的是互相讨厌的图,那么转成互相喜欢的吧,扫一遍,如果不互相讨厌就认为互相喜欢,矩阵转邻接表先. 有边相连的两个点代表能坐在一块.那么找出一个圈圈出来,在该圈内的点有奇数个人的话肯定能凑成1桌.圈圈?那就是简单环了,跟点双连通分量的定义好像一样:每个点都能同时处于1个及以

POJ 2942.Knights of the Round Table 解题报告

简要题解: 意在判断哪些点在一个图的  奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 coder /* 求有向图的点双连通分支tarjan算法 思路: 1.对图先进行深度优先搜索形成搜索数,计算每一个节点的先深编号dfn[n] 2.计算所有节点v的low[v]是在先深生成树上按照后根遍历的顺序进行的. 因此,当仿问节点v时它的每一个儿子u的low[u]已经计算完毕这时low[v]取下

poj 2942 Knights of the Round Table

先建补图,一组骐士可以一组的条件是他们成奇环 引理1:若2个骐士属于2个不同的点双,则他们不可能一起出席,易证 引理2:若一v-dcc中有奇环,则每个点都被至少一个奇环包围,易证 于是求所有的v-dcc再分别染色判奇环就行了 我括号打错了一个调了nmb一下午我透 #include<bits/stdc++.h> using namespace std; const int N=1007; const int M=1000007; int n,m,tot=1,head[N],nxt[M],ver[