矩阵秩 1 扰动的妙用

这是一道很常见的线性代数题目:

例题:求 $n$ 阶矩阵 $A$ 的行列式,其中\[a_{ij}=\left\{\begin{array}{l}x&i=j\\y&i<j\\z&i>j\end{array}\right.\quad .\]

乍一看这个矩阵有点复杂,但是规律也是明显的。

我们要介绍的方法叫做 "秩 1 扰动",利用的是这样一个简单的事实:设 $A,B$ 是两个方阵,且 $B$ 的秩是 1,则 $f(t)=\det|A+tB|$ 是关于 $t$ 的一次多项式。

应用在这个例子上,令 $f(t)=\det(a_{ij}+t)$,则 $f(t)$ 是 $t$ 的一次多项式且 $f(-y)=(x-y)^n$,$f(-z)=(x-z)^n$,用这两个值解出 $f(t)$ 的常数项 $f(0)=\det A$ 来即可。

在求解行列式的时候,通过引入变量,把待求的行列式看做一个或者多个变元的函数,然后找出这个函数可能满足的关系(微分方程、递推关系、根等等)是一种重要的思路。

时间: 2024-10-22 13:13:08

矩阵秩 1 扰动的妙用的相关文章

【原创】开源Math.NET基础数学类库使用(16)C#计算矩阵秩

               本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 开源Math.NET基础数学类库使用总目录:http://www.cnblogs.com/asxinyu/p/4329737.html 上个月对Math.NET的基本使用进行了介绍,主要内容有矩阵,向量的相关操作,解析数据格式,数值积分,数据统计,相关函数,求解线性方程组以及随机数发生器的相关内容.这个月接着深入发掘Math.NET的各种功能,并对

开源Math.NET基础数学类库使用(16)C#计算矩阵秩

原文:[原创]开源Math.NET基础数学类库使用(16)C#计算矩阵秩                本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 开源Math.NET基础数学类库使用总目录:http://www.cnblogs.com/asxinyu/p/4329737.html 上个月对Math.NET的基本使用进行了介绍,主要内容有矩阵,向量的相关操作,解析数据格式,数值积分,数据统计,相关函数,求解线性方程组以及

低秩矩阵填充|奇异值阈值算法

斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" 低秩矩阵恢复是稀疏向量恢复的拓展,二者具有很多可以类比的性质.首先,稀疏是相对于向量而言,稀疏性体现在待恢复向量中非零元素的数量远小于向量长度:而低秩是相对于矩阵而言,低秩体现在矩阵的秩远小于矩阵的实际尺寸.其次,稀疏向量恢复问题可以转化为基于 \(\ell _1\) 范数的凸优化问题,因为 \(\ell _1\) 范数是 \

Matlab矩阵基本操作(定义,运算)

转自:http://blog.csdn.net/perfumekristy/article/details/8119861 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在”[ ]”内: b.矩阵的同行元素之间用空格(或”,”)隔开: c.矩阵的行与行之间用”;”(或回车符)隔开: d.矩阵的元素可以是数值.变量.表达式或函数: e.矩阵的尺寸不必预先定义. 二,矩阵的创建: 1.直接输入法 最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则.建立向

matlab矩阵的表示和简单操作

原地址:http://www.cnblogs.com/Ran_Ran/archive/2010/12/11/1903070.html 一.矩阵的表示在MATLAB中创建矩阵有以下规则:a.矩阵元素必须在"[ ]"内:b.矩阵的同行元素之间用空格(或",")隔开:c.矩阵的行与行之间用";"(或回车符)隔开:d.矩阵的元素可以是数值.变量.表达式或函数:e.矩阵的尺寸不必预先定义. 二,矩阵的创建:1.直接输入法最简单的建立矩阵的方法是从键盘直接输

MATLAB命令大全和矩阵操作大全

转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在"[ ]"内: b.矩阵的同行元素之间用空格(或",")隔开: c.矩阵的行与行之间用";"(或回车符)隔开: d.矩阵的元素可以是数值.变量.表达式或函数: e.矩阵的尺寸不必预先定义. 二,矩阵的创建: 1.直接输

矩阵操作(数据,数组向量,表格)

一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在”[ ]”内: b.矩阵的同行元素之间用空格(或”,”)隔开: c.矩阵的行与行之间用”;”(或回车符)隔开: A=[1 2 3 4 5; 12 12 14 56 657; 23 46 34 67 56 ]; d.矩阵的元素可以是数值.变量.表达式或函数: e.矩阵的尺寸不必预先定义. 二,矩阵的创建: 1.直接输入法 最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则.建立向量的时候可以利用冒号表达式

数据降维--低秩恢复

数据降维--低秩恢复 在实际的信号或图像采集与处理中,数据的维度越高, 给数据的采集和处理带来越大的限制.例如,在采集三维或四维(三个空间维度再加上一个频谱维度或一个时间维度) 信号时,往往比较困难.然而,随着数据维数的升高,这些高维数据之间往往存在较多的相关性和冗余度.信号的维度越高,由于数据本身信息量的增长比数据维度增长慢得多,也就使得数据变得越冗余.一个明显的例子就是,视频信号要比单幅图像的可压缩的空间大得多. 例如,对于一幅图像而言,其像素间的相关性表现在图像在某个变换域的系数是稀疏分布

线性代数笔记(矩阵)

矩阵是平面的,如果是三维的呢?一维是向量,二维是矩阵,三维呢?1)矩阵:由m*n个数排成的矩形数表;横排叫行,竖排叫列:2)方阵:行数和列数都是n的矩阵:主对角线,对角元素,迹(对角元素的和):方阵A的行列式:3)矩阵的线性运算:加法(同型矩阵对应元素分别相加),零矩阵,负矩阵,减法(同型矩阵对应元素分别相减):4)矩阵数乘:每个元素分别相乘;数乘积.5)矩阵运算的八条性质:A+B=B+A;(A+B)+C=A+(B+C);A+0=A;A+(-A)=0;k(A+B)=kA+kB;(k+l)A=kA