约瑟夫环(猴子问题)最快解法

   “约瑟夫环”是一个数学的应用问题:一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把它踢出去…,如此不停的进行下去, 直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n, 输出最后那个大王的编号。如:n=6,m=3

         ——————>       ————————>  ————————>

 ————————>    ————————>   

  最后还剩下1号的猴子。

  对于这个问题,可以这么分析: 首先第一个出列的肯定是a[1]=n%m(m/n的余数),当第i个猴子出列后,剩下的猴子的编号是i+1,i+2,i+3.......i-1,对猴子重新编号是1,2,3,4,5,6,....n-1,假设某个猴子的新编号是k,

那么它原来的编号就是(i+a[1])%n ,如i=1,(i+3)%6=4,假如知道了这个子问题(n-1个猴子)的解是x,那么原问题(n个猴子)的解便是:(x+m%n)%n=(x+m)%n,我们可以想到这是个递归问题,我们可以从只剩1个猴子开始推导,

一直获取它上一次的编号,直到猴子数量增加到n。

  

算法:

public function yuesefu($n, $m){    $r = 0;//猴子的原编号(从0开始)    //假如只有两个猴子,那么第m%2个猴子会留下    for ($i = 2; $i <= $n; $i++) {     //每循环一次,就获取一次原编号        $r = ($r + $m) % $i;    }    return $r + 1;//该剩下的猴子最后的编号}

原文地址:https://www.cnblogs.com/aibaofeng/p/10331295.html

时间: 2024-10-10 12:52:04

约瑟夫环(猴子问题)最快解法的相关文章

约瑟夫环的数学解法

CSDN链接 问题描述:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列.求最后剩下的人的初始编号. 可以把问题转换成:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数.求胜利者的编号.则所得的解加1即为原问题的解: 一般我们采用一个循环队列来模拟约瑟夫环的求解过程,但是如果n比较大的时候,采用模拟的方

约瑟夫环问题的链表解法和数学解法(PHP)

约瑟夫环问题 一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数,再数到第m只,在把它踢出去-,如此不停的进行下去,直到最后只剩下一只猴子为止,那只猴子就叫做大王.要求编程模拟此过程,输入m.n,输出最后那个大王的编号. 链表解法 function king($n,$m){ $monky = range(1,$n); $i = 0; while(count($monky)>1){ $i+=1; $head = array_shift($mon

一个不简洁的约瑟夫环解法

约瑟夫环类似模型:已知有n个人,每次间隔k个人剔除一个,求最后一个剩余的. 此解法为变种,k最初为k-2,之后每次都加1. 例:n=5,k=3.从1开始,第一次间隔k-2=1,将3剔除,第二次间隔k-1=2,将1剔除.依此类推,直至剩余最后一个元素. 核心思路:将原列表复制多份横向展开,每次根据间隔获取被剔除的元素,同时将此元素存入一个剔除列表中.若被剔除元素不存在于剔除列表,则将其加入,若已存在,则顺势后移至从未加入剔除列表的元素,并将其加入.如此重复n-1次.面试遇到的题,当时只写了思路,没

【好记性不如烂笔头】约瑟夫环问题之形象解法(其实就是实实在在的模拟一下游戏过程)

1 using System; 2 using System.Collections.Generic; 3 using System.Linq; 4 using System.Text; 5 using System.Threading.Tasks; 6 7 namespace 约瑟夫环游戏 8 { 9 class Program 10 { 11 /* 12 * 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围. 13 * 从编号为k的

约瑟夫环-一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈

一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数,再数到第m只,在把它踢出去-,如此不停 的进行下去,直到最后只剩下一只猴子为止,那只猴子就叫做大王.要求编程模拟此过程,输入m.n, 输出最后那个大王的编号(约瑟夫环). function fuhuan($allnum, $ti){ $arr = array(); for($i = 0; $i < $allnum; $i++){ $arr[$i] = $i; } $nums = 1; whi

小朋友学数据结构(1):约瑟夫环的链表解法、数组解法和数学公式解法

约瑟夫环的链表解法.数组解法和数学公式解法 约瑟夫环(Josephus)问题是由古罗马的史学家约瑟夫(Josephus)提出的,他参加并记录了公元66-70年犹太人反抗罗马的起义.约瑟夫作为一个将军,设法守住了裘达伯特城达47天之久,在城市沦陷之后,他和40名死硬的将士在附近的一个洞穴中避难.在那里,这些叛乱者表决说"要投降毋宁死".于是,约瑟夫建议每个人轮流杀死他旁边的人,而这个顺序是由抽签决定的.约瑟夫有预谋地抓到了最后一签,并且,作为洞穴中的两个幸存者之一,他说服了他原先的牺牲品

Josephus环的四种解法(约瑟夫环)

约瑟夫环 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列.通常解决这类问题时我们把编号从0~n-1,最后结果+1即为原问题的解引用别人的一个图:直观说明问题 分析: 第一步:从1开始报数为3的时候就删除3号结点第二步:从4号结点开始报数,当为3的时候删除6号结点:第三步:从7号结点开始报数,当为3的时候

约瑟夫环问题--递推解法

利用数学推导,如果能得出一个通式,就可以利用递归.循环等手段解决.下面给出推导的过程: (1)第一个被删除的数为 (m - 1) % n. (2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2.做一个简单的映射. k         ----->  0              k+1    ------> 1              k+2    ------> 2           

约瑟夫环问题python解法

约瑟夫环问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到k的那个人被杀掉:他的下一个人又从1开始报数,数到k的那个人又被杀掉:依此规律重复下去,直到圆桌周围的人只剩最后一个. 思路是:当k是1的时候,存活的是最后一个人,当k>=2的时候,构造一个n个元素的循环链表,然后依次杀掉第k个人,留下的最后一个是可以存活的人.代码如下: class Node(): def __init__(self,value,next=None): self.valu

约瑟夫环(N个人围桌,C语言,数据结构)

约瑟夫环问题(C语言.数据结构版) 一.问题描述 N个人围城一桌(首位相连),约定从1报数,报到数为k的人出局,然后下一位又从1开始报,以此类推.最后留下的人获胜.(有很多类似问题,如猴子选代王等等,解法都一样) 二.思路分析 (1)可将人的顺序简单编号,从1到N: (2)构造一个循环链表,可以解决首位相连的问题,同时如果将人的编号改为人名或者其他比较方便 (3)将人的编号插入到结构体的Data域: (4)遍历人的编号,输出参与的人的编号: (5)开始报数,从头报数,报到k的人出局(删除次结点)