tuple元组详解

这次要讲的内容是:c++11中的tuple(元组)。tuple看似简单,其实它是简约而不简单,可以说它是c++11中一个既简单又复杂的东东,关于它简单的一面是它很容易使用,复杂的一面是它内部隐藏了太多细节,要揭开它神秘的面纱时又比较困难。

  tuple是一个固定大小的不同类型值的集合,是泛化的std::pair。和c#中的tuple类似,但是比c#中的tuple强大得多。我们也可以把他当做一个通用的结构体来用,不需要创建结构体又获取结构体的特征,在某些情况下可以取代结构体使程序更简洁,直观。

基本用法

构造一个tuple

tuple<const char*, int>tp = make_tuple(sendPack,nSendSize); //构造一个tuple

这个tuple等价于一个结构体

struct A
{
char* p;
int len;
};

用tuple<const char*, int>tp就可以不用创建这个结构体了,而作用是一样的,是不是更简洁直观了。还有一种方法也可以创建元组,用std::tie,它会创建一个元组的左值引用。

auto tp = return std::tie(1, "aa", 2);
//tp的类型实际是:
std::tuple<int&,string&, int&>

再看看如何获取它的值:

const char* data = tp.get<0>(); //获取第一个值
int len = tp.get<1>(); //获取第二个值

还有一种方法也可以获取元组的值,通过std::tie解包tuple

int x,y;
string a;
std::tie(x,a,y) = tp; 

通过tie解包后,tp中三个值会自动赋值给三个变量。

解包时,我们如果只想解某个位置的值时,可以用std::ignore占位符来表示不解某个位置的值。比如我们只想解第三个值时:

std::tie(std::ignore,std::ignore,y) = tp; //只解第三个值了

还有一个创建右值的引用元组方法:forward_as_tuple。

std::map<int, std::string> m;
m.emplace(std::forward_as_tuple(10, std::string(20, ‘a‘)));

它实际上创建了一个类似于std::tuple<int&&, std::string&&>类型的tuple。

我们还可以通过tuple_cat连接多个tupe

int main()
{
std::tuple<int, std::string, float> t1(10, "Test",
3.14);
int n = 7;
auto t2 = std::tuple_cat(t1, std::make_pair("Foo",
"bar"), t1, std::tie(n));
n = 10;
print(t2);
}

输出结果:

(10, Test, 3.14, Foo, bar, 10, Test, 3.14, 10)

  到这里tuple的用法介绍完了,是不是很简单,也很容易使用,相信你使用它之后就离不开它了。我前面说过tuple是简约而不简单。它有很多高级的用法。它和模板元关系密切,要介绍它的高级用法的时候,读者需要一定的模板元基础,如果你只是把它当一个泛型的pair去使用时,这部分可以不看,如果你想用它高级用法的时候就往下看。让我们要慢慢揭开tuple神秘的面纱。

tuple的高级用法

获取tuple中某个位置元素的类型

  通过std::tuple_element获取元素类型。

template<typename Tuple>
void Fun(Tuple& tp)
{
std::tuple_element<0,Tuple>::type first = std::get<0>
(mytuple);
std::tuple_element<1,Tuple>::type second = std::get<1>
(mytuple);
}

  

获取tuple中元素的个数:

tuple t;

int size = std::tuple_size<decltype(t))>::value;

遍历tuple中的每个元素

  因为tuple的参数是变长的,也没有for_each函数,如果我们想遍历tuple中的每个元素,需要自己写代码实现。比如我要打印tuple中的每个元素。

template<class Tuple, std::size_t N>
struct TuplePrinter {
    static void print(const Tuple& t)
    {
        TuplePrinter<Tuple, N - 1>::print(t);
        std::cout << ", " << std::get<N - 1>(t);
    }
};

template<class Tuple>
struct TuplePrinter<Tuple, 1>{
    static void print(const Tuple& t)
    {
        std::cout << std::get<0>(t);
    }
};

template<class... Args>
void PrintTuple(const std::tuple<Args...>& t)
{
    std::cout << "(";
    TuplePrinter<decltype(t), sizeof...(Args)>::print(t);
    std::cout << ")\n";
}

根据tuple元素值获取其对应的索引位置

namespace detail
{
    template<int I, typename T, typename... Args>
    struct find_index
    {
        static int call(std::tuple<Args...> const& t, T&& val)
        {
            return (std::get<I - 1>(t) == val) ? I - 1 :
                find_index<I - 1, T, Args...>::call(t, std::forward<T>(val));
        }
    };

    template<typename T, typename... Args>
    struct find_index<0, T, Args...>
    {
        static int call(std::tuple<Args...> const& t, T&& val)
        {
            return (std::get<0>(t) == val) ? 0 : -1;
        }
    };
}

template<typename T, typename... Args>
int find_index(std::tuple<Args...> const& t, T&& val)
{
    return detail::find_index<0, sizeof...(Args) - 1, T, Args...>::
           call(t, std::forward<T>(val));
}

int main()
{
    std::tuple<int, int, int, int> a(2, 3, 1, 4);
    std::cout << find_index(a, 1) << std::endl; // Prints 2
    std::cout << find_index(a, 2) << std::endl; // Prints 0
    std::cout << find_index(a, 5) << std::endl; // Prints -1 (not found)
}

展开tuple,并将tuple元素作为函数的参数。这样就可以根据需要对tuple元素进行处理了

#include <tuple>
#include <type_traits>
#include <utility>

template<size_t N>
struct Apply {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T && t, A &&... a)
-> decltype(Apply<N-1>::apply(
::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)),
::std::forward<A>(a)...
))
{
return Apply<N-1>::apply(::std::forward<F>(f),
::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)),
::std::forward<A>(a)...
);
}
};

template<>
struct Apply<0> {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T &&, A &&... a)
-> decltype(::std::forward<F>(f)
(::std::forward<A>(a)...))
{
return ::std::forward<F>(f)(::std::forward<A>
(a)...);
}
};

template<typename F, typename T>
inline auto apply(F && f, T && t)
-> decltype(Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f),
::std::forward<T>(t)))
{
return Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f),
::std::forward<T>(t));
}

void one(int i, double d)
{
std::cout << "function one(" << i << ", " << d <<
");\n";
}
int two(int i)
{
std::cout << "function two(" << i << ");\n";
return i;
}

//测试代码
int main()
{
std::tuple<int, double> tup(23, 4.5);
apply(one, tup);

int d = apply(two, std::make_tuple(2));

return 0;
}

  看到这里,想必大家对tuple有了一个全面的认识了吧,怎么样,它是简约而不简单吧。对模板元不熟悉的童鞋可以不看tuple高级用法部分,不要为看不懂而捉急,没事的,高级部分一般用不到,知道基本用法就够用了。

tuple和vector比较:

vector只能容纳同一种类型的数据,tuple可以容纳任意类型的数据;

vector和variant比较:

二者都可以容纳不同类型的数据,但是variant的类型个数是固定的,而tuple的类型个数不是固定的,是变长的,更为强大。

原文地址:https://www.cnblogs.com/boost/p/10529418.html

时间: 2024-11-08 00:40:37

tuple元组详解的相关文章

Python之tuple元组详解

元组:有序,一级元素不可以修改.不能被增加或删除(元组是可迭代对象) 一般写法括号内最后面加个英文逗号用来区分: test  =  (,) test1 = (11,22,) 例: test = (123, 456, 789, 'abc',) 1.通过索引取值 v = test[2] #取出 789 print(v) 2.切片取值 v1, v2 = test[1:3] #取出456和789 pritn(v1, v2) 3.可以for循环,是可迭代对象 for item in test: print

序列之元组详解

元组是序列一种,与列表类似,但是不能修改,下面我们详解介绍下元组: 1 列表近亲:元组 1.1 元组定义与访问方式: 元组与列表类似,元组语法:(ele1, ele2, ele3):具体如下: #定义元组1,与列表类似 a = (1,2,3) print(a) #定义元组2 b = 'a', 'b', 'c' print(b) #元素访问: print(a[0], b[1]) 1.2 tuple方法使用: tuple可以将可迭代对象转成元组,相关操作如下: #range对象转元组 print(t

python 列表、元组 详解

python中有6种序列的内置类型,分别为:列表,元组,字符串,Unicode字符串,buffer对象和xrange对象 列表和元组是最常见两种类型. 下面将以列表(list)和元组(tuple)为例对序列操作进行详细的讲解: 一.列表(list) 列表序列操作有:索引.切片.修改.追加.插入.删除.扩展.统计.排序(翻转).获取下标.拷贝 1. 索引 (list[i]) 列表的索引序号(又称为下标)如下图所示,该序列一共拥有n个元素, 从左到右索引是从 0 开始,  n-1 为最后一个元素 从

Python教学课程分享3-列表与元组详解

第3章  列表与元组 3.1  序列操作 3.1.1  创建序列 Python序列一般指列表.元组和字符串,这里以列表为例,当编程人员想创建一个列表序列时,可以遵照以下指令规则(names为随意设定的变量,用来存储列表中的内容): l names = ['awei', 'xiaohao', 'ludashi','happy','perfect'] 在这个序列中,第一个元素为'awei',索引为0,之后的元素以此类推. 在序列中,所有的序列类型都是可以进行某些特定操作的,这些特定操作包括元素访问,

详解C# Tuple VS ValueTuple(元组类 VS 值元组)

C# 7.0已经出来一段时间了,大家都知道新特性里面有个对元组的优化:ValueTuple.这里利用详尽的例子详解Tuple VS ValueTuple(元组类VS值元组),10分钟让你更了解ValueTuple的好处和用法. 如果您对Tuple足够了解,可以直接跳过章节"回顾Tuple",直达章节"ValueTuple详解",查看值元组的炫丽用法. 回顾Tuple Tuple是C# 4.0时出的新特性,.Net Framework 4.0以上版本可用. 元组是一种

序列内置方法详解(string/list/tuple)

一.常用方法集合 1.1.string,字符串常用方法 以下举例是python2.7测试: 函数名称 作用 举例 str.capitalize() 字符串第一个字符如果是字母,则把字母替换为大写字母.然后返回新的字符串 >>> l = 'abc cba' >>> l.capitalize() 'Abc cba' >>> l.capitalize() '2b 3c' str.center() 字符串设置为指定字符宽度,并居中.默认是用空格填充前后空白字符

Python中time模块详解

在Python中,与时间处理有关的模块就包括:time,datetime以及calendar.这篇文章,主要讲解time模块. 在开始之前,首先要说明这几点: 在Python中,通常有这几种方式来表示时间:1)时间戳 2)格式化的时间字符串 3)元组(struct_time)共九个元素.由于Python的time模块实现主要调用C库,所以各个平台可能有所不同. UTC(Coordinated Universal Time,世界协调时)亦即格林威治天文时间,世界标准时间.在中国为UTC+8.DST

Python数据类型及其方法详解

Python数据类型及其方法详解 我们在学习编程语言的时候,都会遇到数据类型,这种看着很基础也不显眼的东西,却是很重要,本文介绍了python的数据类型,并就每种数据类型的方法作出了详细的描述,可供知识回顾. 一.整型和长整型 整型:数据是不包含小数部分的数值型数据,比如我们所说的1.2.3.4.122,其type为"int" 长整型:也是一种数字型数据,但是一般数字很大,其type为"long" 在python2中区分整型和长整型,在32位的机器上,取值范围是-2

Storm概念、原理详解及其应用(一)BaseStorm

本文借鉴官文,添加了一些解释和看法,其中有些理解,写的比较粗糙,有问题的地方希望大家指出.写这篇文章,是想把一些官文和资料中基础.重点拿出来,能总结出便于大家理解的话语.与大多数"wordcount"代码不同的是,并不会有如何运行第一storm代码等内容,只有在运行完代码后,发现需要明白:"知其然,并知其所以然". Storm是什么?为什么要用Storm?为什么不用Spark? 第一个问题,以下概念足以解释: Storm是基于数据流的实时处理系统,提供了大吞吐量的实