本地idea开发mapreduce程序提交到远程hadoop集群执行

https://www.codetd.com/article/664330

https://blog.csdn.net/dream_an/article/details/84342770

通过idea开发mapreduce程序并直接run,提交到远程hadoop集群执行mapreduce。

简要流程:本地开发mapreduce程序–>设置yarn 模式 --> 直接本地run–>远程集群执行mapreduce程序;

完整的流程:本地开发mapreduce程序——> 设置yarn模式——>初次编译产生jar文件——>增加 job.setJar("mapreduce/build/libs/mapreduce-0.1.jar");——>直接在Idea中run——>远程集群执行mapreduce程序;

一图说明问题:

源码
build.gradle

plugins {
    id ‘java‘
}

group ‘com.ruizhiedu‘
version ‘0.1‘

sourceCompatibility = 1.8

repositories {
    mavenCentral()
}

dependencies {
    compile group: ‘org.apache.hadoop‘, name: ‘hadoop-common‘, version: ‘3.1.0‘
    compile group: ‘org.apache.hadoop‘, name: ‘hadoop-mapreduce-client-core‘, version: ‘3.1.0‘
    compile group: ‘org.apache.hadoop‘, name: ‘hadoop-mapreduce-client-jobclient‘, version: ‘3.1.0‘

    testCompile group: ‘junit‘, name: ‘junit‘, version: ‘4.12‘
}

java文件

输入、输出已经让我写死了,可以直接run。不需要再运行时候设置idea运行参数

wc.java

package com;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils;

import java.io.BufferedReader;

import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.*;

/**
 * @author wangxiaolei(王小雷)
 * @since 2018/11/22
 */

public class wc {
    public static class TokenizerMapper
            extends Mapper<Object, Text, Text, IntWritable> {

        static enum CountersEnum { INPUT_WORDS }

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        private boolean caseSensitive;
        private Set<String> patternsToSkip = new HashSet<String>();

        private Configuration conf;
        private BufferedReader fis;

        @Override
        public void setup(Context context) throws IOException,
                InterruptedException {
            conf = context.getConfiguration();
            caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
            if (conf.getBoolean("wordcount.skip.patterns", false)) {
                URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
                for (URI patternsURI : patternsURIs) {
                    Path patternsPath = new Path(patternsURI.getPath());
                    String patternsFileName = patternsPath.getName().toString();
                    parseSkipFile(patternsFileName);
                }
            }
        }

        private void parseSkipFile(String fileName) {
            try {
                fis = new BufferedReader(new FileReader(fileName));
                String pattern = null;
                while ((pattern = fis.readLine()) != null) {
                    patternsToSkip.add(pattern);
                }
            } catch (IOException ioe) {
                System.err.println("Caught exception while parsing the cached file ‘"
                        + StringUtils.stringifyException(ioe));
            }
        }

        @Override
        public void map(Object key, Text value, Context context
        ) throws IOException, InterruptedException {
            String line = (caseSensitive) ?
                    value.toString() : value.toString().toLowerCase();
            for (String pattern : patternsToSkip) {
                line = line.replaceAll(pattern, "");
            }
            StringTokenizer itr = new StringTokenizer(line);
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
                Counter counter = context.getCounter(CountersEnum.class.getName(),
                        CountersEnum.INPUT_WORDS.toString());
                counter.increment(1);
            }
        }
    }

    public static class IntSumReducer
            extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
        ) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();
        conf.set("yarn.resourcemanager.address", "192.168.56.101:8050");
        conf.set("mapreduce.framework.name", "yarn");
        conf.set("fs.defaultFS", "hdfs://vbusuanzi:9000/");
//        conf.set("mapred.jar", "mapreduce/build/libs/mapreduce-0.1.jar"); // 也可以在这里设置刚刚编译好的jar
        conf.set("mapred.job.tracker", "vbusuanzi:9001");
//        conf.set("mapreduce.app-submission.cross-platform", "true");// Windows开发者需要设置跨平台
       args = new String[]{"/tmp/test/LICENSE.txt","/tmp/test/out30"};
        GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
        String[] remainingArgs = optionParser.getRemainingArgs();

        if ((remainingArgs.length != 2) && (remainingArgs.length != 4)) {
            System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
            System.exit(2);
        }

        Job job = Job.getInstance(conf,"test");
        job.setJar("mapreduce/build/libs/mapreduce-0.1.jar");
        job.setJarByClass(com.wc.class);

        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        List<String> otherArgs = new ArrayList<String>();
        for (int i=0; i < remainingArgs.length; ++i) {
            if ("-skip".equals(remainingArgs[i])) {
                job.addCacheFile(new Path(remainingArgs[++i]).toUri());
                job.getConfiguration().setBoolean("wordcount.skip.patterns", true);
            } else {
                otherArgs.add(remainingArgs[i]);
            }
        }
        FileInputFormat.addInputPath(job, new Path(otherArgs.get(0)));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1)));

        job.waitForCompletion(true);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}


原文地址:https://www.cnblogs.com/SuMeng/p/10260023.html

时间: 2024-10-11 18:04:19

本地idea开发mapreduce程序提交到远程hadoop集群执行的相关文章

在windows远程提交任务给Hadoop集群(Hadoop 2.6)

我使用3台Centos虚拟机搭建了一个Hadoop2.6的集群.希望在windows7上面使用IDEA开发mapreduce程序,然后提交的远程的Hadoop集群上执行.经过不懈的google终于搞定 开始我使用hadoop的eclipse插件来执行job,竟然成功了,后来发现mapreduce是在本地执行的,根本没有提交到集群上.我把hadoop的4个配置文件加上后就开始出现了问题. 1:org.apache.hadoop.util.Shell$ExitCodeException: /bin/

Eclipse提交任务至Hadoop集群遇到的问题

环境:Windows8.1,Eclipse 用Hadoop自带的wordcount示例 hadoop2.7.0 hadoop-eclipse-plugin-2.7.0.jar //Eclipse的插件,需要对应Hadoop当前版本 基本步骤有很多博客已经提及,就不再赘述 1. 将hadoop-eclipse-plugin-2.7.0.jar放入Eclipse的plugins目录,启动Eclipse 2. 配置Eclipse的Hadoop location信息 3. 新建MapReduce Pro

Eclipse远程提交hadoop集群任务

文章概览: 1.前言 2.Eclipse查看远程hadoop集群文件 3.Eclipse提交远程hadoop集群任务 4.小结 1 前言 Hadoop高可用品台搭建完备后,参见<Hadoop高可用平台搭建>,下一步是在集群上跑任务,本文主要讲述Eclipse远程提交hadoop集群任务. 2 Eclipse查看远程hadoop集群文件 2.1 编译hadoop eclipse 插件 Hadoop集群文件查看可以通过webUI或hadoop Cmd,为了在Eclipse上方便增删改查集群文件,我

Hadoop集群(第7期)_Eclipse开发环境设置

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

Hadoop集群_Eclipse开发环境设置

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

Hadoop集群 -Eclipse开发环境设置

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

Windows平台开发Mapreduce程序远程调用运行在Hadoop集群—Yarn调度引擎异常

共享原因:虽然用一篇博文写问题感觉有点奢侈,但是搜索百度,相关文章太少了,苦苦探寻日志才找到解决方案. 遇到问题:在windows平台上开发的mapreduce程序,运行迟迟没有结果. Mapreduce程序 public class Test { public static void main(String [] args) throws Exception{ Configuration conf = new Configuration(); conf.set("fs.defaultFS&qu

Eclipse远程提交MapReduce任务到Hadoop集群

一.介绍 以前写完MapReduce任务以后总是打包上传到Hadoop集群,然后通过shell命令去启动任务,然后在各个节点上去查看Log日志文件,后来为了提高开发效率,需要找到通过Ecplise直接将MaprReduce任务直接提交到Hadoop集群中.该章节讲述用户如何从Eclipse的压缩包最终完成Eclipse提价任务给MapReduce集群. 二.详解 1.安装Eclipse,安装hadoop插件 (1)首先下载Eclipse的压缩包,然后可以从这里下载hadoop 2.7.1的ecp

在Eclipse中开发MapReduce程序

一.Eclipse的安装与设置 1.在Eclipse官网上下载eclipse-jee-oxygen-3a-linux-gtk-x86_64.tar.gz文件并将其拷贝到/home/jun/Resources下,然后再将文件拷贝到/home/jun下并解压. [[email protected] ~]$ cp /home/jun/Resources/eclipse-jee-oxygen-3a-linux-gtk-x86_64.tar.gz /home/jun/ [[email protected]