Java数据结构——二叉搜索树

定义
二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。

性质
1,任意节点x,其左子树中的key不大于x.key,其右子树中的key不小于x.key。
2,不同的二叉搜索树可以代表同一组值的集合。
3,二叉搜索树的基本操作和树的高度成正比,所以如果是一棵完全二叉树的话最坏运行时间为Θ(lgn),但是若是一个n个节点连接成的线性树,那么最坏运行时间是Θ(n)。
4,根节点是唯一一个parent指针指向NIL节点的节点。
5,每一个节点至少包括key、left、right与parent四个属性,构建二叉搜索树时,必须存在针对key的比较算法。


简单实现(curd操作)

TreeNode.java

public class TreeNode {
private int data;
private TreeNode leftChild;
private TreeNode rightChild;
public TreeNode parent;

public int getData() {
return data;
}

public void setData(int data) {
this.data = data;
}

public TreeNode getLeftChild() {
return leftChild;
}

public void setLeftChild(TreeNode leftChild) {
this.leftChild = leftChild;
}

public TreeNode getRightChild() {
return rightChild;
}

public void setRightChild(TreeNode rightChild) {
this.rightChild = rightChild;
}

public TreeNode getParent() {
return parent;
}

public void setParent(TreeNode parent) {
this.parent = parent;
}

public TreeNode(int data) {
super();
this.data = data;
}

}

BinarySearchTree.java(不含main类,可以自己写main类)

public class BinarySearchTree {
private TreeNode root;

//构造二叉搜索树
public TreeNode creatSearchBinaryTree(int data) {
TreeNode node = null;
TreeNode parent = null;
if (root == null) {
node = new TreeNode(data);
root = node;
}
node = root;
while (node != null) {
parent = node;
if (data > node.data) {
node = node.rightChild;
} else if (data < node.data) {
node = node.leftChild;
} else {
return node;
}
}
node = new TreeNode(data);
if (data < parent.data) {
parent.leftChild = node;
} else {
parent.rightChild = node;
}
node.parent = parent;
return node;
}

//中序遍历
public void inOrder(TreeNode n) {
if (n != null) {
inOrder(n.getLeftChild());
System.out.print(n.data + " ");
inOrder(n.getRightChild());
}
}

// 添加节点
public boolean insertNode(int data) {
TreeNode node = new TreeNode(data);
if (root == null) {
root = node;
return true;
}
TreeNode parent = root;
TreeNode current = root;
while (true) {
parent = current;
if (data == current.data) {
return true;
}
if (data < current.data) {
current = current.leftChild;
if (current == null) {
parent.leftChild = node;
return true;
}
} else {
current = current.rightChild;
if (current == null) {
parent.rightChild = node;
return true;
}
}
}

}

// 删除节点
public boolean deleteNode(int data) {
TreeNode current = root;
TreeNode parent = root;
boolean isLeftChild = true;
// 找到要删除的点,并记录该节点是否为左节点
while (current.data != data) {
parent = current;
if (data < current.data) {
isLeftChild = true;
current = current.leftChild;
} else {
isLeftChild = false;
current = current.rightChild;
}
if (current == null) {
return false;
}
}
// 如果删除节点为子节点
if (current.leftChild == null && current.rightChild == null) {
if (current == root) {
root = null;
} else {
if (isLeftChild == true) {
parent.leftChild = null;
} else {
parent.rightChild = null;
}
}
// 如果删除节点只有一个子节点
} else if ((current.leftChild != null && current.rightChild == null)
|| (current.leftChild == null && current.rightChild != null)) {
if (current.rightChild == null) {
if (root == current) {
root = current.leftChild;
} else {
if (isLeftChild == true) {
parent.leftChild = current.leftChild;
} else {
parent.rightChild = current.leftChild;
}
}
} else {
if (root == current) {
root = current.rightChild;
} else {
if (isLeftChild == true) {
parent.leftChild = current.rightChild;
} else {
parent.rightChild = current.rightChild;
}
}
}
// 如果删除节点同时有左右节点,找后继节点
} else if (current.leftChild != null && current.rightChild != null) {
TreeNode processer = processer(current);
if (current == root) {
root = processer;
} else {
if (isLeftChild == true) {
parent.leftChild = processer;
} else {
parent.rightChild = processer;
}
}
processer.leftChild = current.leftChild;
}
return true;
}

//寻找后继节点
private TreeNode processer(TreeNode delNode) {
TreeNode parent = delNode;
TreeNode success = delNode;
TreeNode current = delNode.rightChild;
while (current != null) {
parent = current;
success = current;
current = current.leftChild;
}
if (success != delNode.rightChild) {
parent.leftChild = success.rightChild;
success.rightChild = delNode.rightChild;
}
return success;
}

// 修改节点
public boolean updateNode(int oldData, int newData) {
boolean del = deleteNode(oldData);
insertNode(newData);
if (del == true) {
return true;
} else {
return false;
}
}

// 查找节点
public TreeNode findNode(int data) {
TreeNode current = root;
while (current.data != data) {
if (data < current.data) {
current = current.leftChild;
} else {
current = current.rightChild;
}
if (current == null) {
return null;
}
}
return current;
}
}

原文地址:https://www.cnblogs.com/ericz2j/p/10732521.html

时间: 2024-11-06 13:27:00

Java数据结构——二叉搜索树的相关文章

数据结构——二叉搜索树、B树、B-树

数据结构——二叉搜索树.B树.B-树 1. 综述 二叉排序树(Binary Sort Tree),又叫二叉查找树(Binary Search Tree),也叫二叉排序树. 二叉搜索树满足以下性质: 1. 若根节点左子树不为空,则左子树上的所有节点均小于根节点: 2. 若根节点右子树不为空,则右子树上的所有节点均大于根节点: 3. 其左右子树也是二叉搜索树(递归定义): 4. 没有键值相等的点. B树就是B-树.B树/B-树英文叫B-Tree,可能被不小心翻译成了B-树.

Java实现二叉搜索树节点的删除

前言: 之前写过一篇关于二叉搜索树的博客:Java对二叉搜索树进行插入.查找.遍历.最大值和最小值的操作  二叉查找树重要性质: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值: (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值: (3)左.右子树也分别为二叉排序树: 如图: 这次我想分享的是二叉搜索树中节点是如何删除的,删除节点是二叉搜索树常用的一般操作中最复杂的,删除节点要从查找要删除的节点开始入手 ,找到节点后,这个要删除的节点可能会有三种情况需要考虑: 1

数据结构-二叉搜索树与双向链表

题目:输入一颗二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的节点,只能调整树中节点指针的指向. 分析:首先不能创建新的结构,只能在树的前提下进行改变指针的指向.又由于是二叉搜索树,可以通过画图分析可知,二叉搜索树的左子树小于根节点小于右子树,可以发现是个递归过程也是一个中序遍历.所以只需要在中序那块进行指针调整. /* 剑指offer面试题27 */ #include <iostream> using namespace std; struct BinaryTree{

Java实现二叉搜索树

原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11406176.html 尝试一下用Java实现二叉搜索树/二叉查找树,记录自己的学习历程. 1. 首先先来设计实现一下节点Node. ??一个二叉树的节点需要以下几个元素: key 关键字 value 节点的值(key也可以代替value) parent 父节点 leftChildren 左儿子节点 rightChildren 右儿子节点 那就开始吧! /** * 节点 */ class N

[数据结构]二叉搜索树(BST) VS 平衡二叉排序树(AVL) VS B树(平衡多路搜索树) VS B+树 VS 红黑树(平衡二叉B树)

1 二叉排序树/二叉查找树/Binary Sort Tree 1种对排序和查找都很有用的特殊二叉树 叉排序树的弊端的解决方案:平衡二叉树 二叉排序树必须满足的3条性质(或是具有如下特征的二叉树) 若它的左子树不为空,则:左子树上所有结点的值< 它根结点的值 若它的右子树不为空,则:右子树上所有结点的值 > 它根结点的值 它的左子树.右子树也分别为二叉排序树(递归性) (按照如上定义,即: 1 无键值相等的结点 2 中序遍历一颗二叉树时,可得一个结点值递增的有序序列) 2 平衡二叉排序树/Bal

数据结构-二叉搜索树(BST binary search tree)

本文由@呆代待殆原创,转载请注明出处:http://www.cnblogs.com/coffeeSS/ 二叉搜索树简介 顾名思义,二叉搜索树是以一棵二叉树来组织的,这样的一棵树可以用一个链表数据结构来表示,每个节点除了key和卫星数据(除了二叉树节点的基本数据以外人为添加的数据,这些数据和树的基本结构无关),还有left.right.parent,分别指向节点的左孩子.右孩子和父节点,如果对应的节点不存在则指向NIL节点(因为最简单的二叉搜索树中的NIL节点里并没有有用的信息,所以在实现的时候简

数据结构 ---- 二叉搜索树

一直对于二叉搜索树(又叫二叉排序树,也叫二叉查找树),没有很好的理解,决定花点时间来学习and总结.. 二叉搜索树也是二叉树的一种.(就像堆也就二叉树的一种一样...) 只不过,二叉搜索树也是有其他要求:对于所有的子树,其根节点的值大于左子树上的所有结点的值,而小于右子树上所有结点的值的值.. 对于错误的理解:对于所有的结点,要大于其左结点,小于其右结点..(PS:这种理解是错误的,一定要注意..) 还有一点需要注意的是:我们的大于和小于都应该是严格的. ========== 下面主要针对,其建

Java实现二叉搜索树的添加,前序、后序、中序及层序遍历,求树的节点数,求树的最大值、最小值,查找等操作

什么也不说了,直接上代码. 首先是节点类,大家都懂得 /** * 二叉树的节点类 * * @author HeYufan * * @param <T> */ class Node<T extends Comparable<? super T>> { /** * 节点储存的值 */ private T data; /** * 左子节点 */ private Node<T> leftNode; /** * 右子节点 */ private Node<T>

数据结构-二叉搜索树的js实现

一.树的相关概念 1.基本概念 子树 一个子树由一个节点和它的后代构成. 节点的度 节点所拥有的子树的个数. 树的度 树中各节点度的最大值 节点的深度 节点的深度等于祖先节点的数量 树的高度 树的高度等于所有节点深度的最大值 森林 若干课互不相交的树的集合.任何一棵树,删去根节点就变成了森林. 2. 二叉树 二叉树的定义 (1)二叉树中每个节点的度不大于2 (2)二叉树是有序的,其子树有左右之分,其次序不能随意颠倒 二叉树的性质 第k层上最多有2^(k-1)个节点 深度为k的二叉树最多有2^(k