uva 524 prime ring problem——yhx

  Prime Ring Problem 

A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

Input

n (0 < n <= 16)

Output

The output format is shown as sample below. Each row represents a series
of circle numbers in the
ring beginning from 1 clockwisely and anticlockwisely. The order of numbers
must satisfy the above requirements.

You are to write a program that completes above process.

 1 #include<cstdio>
 2 #include<cstring>
 3 bool prm[35],vis[20];
 4 int a[20],n;
 5 bool ck(int x)
 6 {
 7     int i;
 8     for (i=2;i*i<=x;i++)
 9       if (x%i==0) return 0;
10     return 1;
11 }
12 void dfs(int p)
13 {
14     int i,j,k,x,y,z;
15     if (p==n+1)
16     {
17         if (prm[a[n]+a[1]])
18         {
19             printf("%d",a[1]);
20             for (i=2;i<=n;i++)
21               printf(" %d",a[i]);
22             printf("\n");
23         }
24         return;
25     }
26     for (i=2;i<=n;i++)
27       if (vis[i]==0&&prm[i+a[p-1]])
28       {
29           a[p]=i;
30           vis[i]=1;
31           dfs(p+1);
32           vis[i]=0;
33       }
34 }
35 int main()
36 {
37     int i,j,k,p,q,x,y,z,t;
38     bool bbb=0;
39     for (i=2;i<=35;i++)
40       prm[i]=ck(i);
41     a[1]=1;
42     t=0;
43     while (scanf("%d",&n)==1)
44     {
45         if (bbb) printf("\n");
46         bbb=1;
47         memset(vis,0,sizeof(vis));
48         vis[1]=1;
49         printf("Case %d:\n",++t);
50         dfs(2);
51     }
52 }

素数环。注意边界。注意每组数据间的回车(虽然题上没说)。

时间: 2024-10-11 05:51:55

uva 524 prime ring problem——yhx的相关文章

[2016-02-19][UVA][524][Prime Ring Problem]

UVA - 524 Prime Ring Problem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the

UVa 524 - Prime Ring Problem

题目:把1-n,连续的放到一个环里,使相邻的数字和为素数,输出所有结果. 分析:搜索+剪枝.如果裸搜,用dancing-links那种拆装的链表,应该差不多满足16的数据量. 这里利用一个性质进行剪枝:相邻的数字一定是奇偶性不同的数字. (如果上述假设不成立,则存在相邻的奇数或偶数,那么他们的和一定是大于2的偶数,不是素数) 根据上面的假设,还有一条推论:只有n为偶数时才有解. (n为奇数,一直至少有一对奇数相邻,同上,矛盾(鸽巢原理)) 因此,每次搜索的数据其实是n/2,时间复杂度为O((n/

UVA - 524 Prime Ring Problem(dfs回溯法)

UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the sum of number

UVa 524 Prime Ring Problem(DFS , 回溯)

题意  把1到n这n个数以1为首位围成一圈  输出所有满足任意相邻两数之和均为素数的所有排列 直接枚举排列看是否符合肯定会超时的  n最大为16  利用回溯法 边生成边判断  就要快很多了 #include<cstdio> using namespace std; const int N = 50; int p[N], vis[N], a[N], n; int isPrime(int k) { for(int i = 2; i * i <= k; ++i) if(k % i == 0)

UVa 524 Prime Ring Problem(回溯法)

传送门 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers 1, 2, . . . , n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle sho

UVA - 524 Prime Ring Problem(dfs回溯法) 解题心得

原题 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always be 1.

UVA - 524 Prime Ring Problem(素数环)(回溯法)

题意:输入n,把1~n组成个环,相邻两个数之和为素数. 分析:回溯法. #pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<s

UVa 524 Prime Ring Problem【回溯】

题意:给出n,把从1到n排成一个环,输出相邻两个数的和为素数的序列 照着紫书敲的, 大概就是这个地方需要注意下,初始化的时候a[0]=1,然后dfs(1),从第1个位置开始搜 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include <cmath> 5 #include<stack> 6 #include<vector> 7 #include<m

UVa 524 Prime Ring Problem (回溯)

第一次无指导写的回溯. 感觉也不难,小紫书上说"学习回溯短则数天,长则数月或一年以上", 但我没用一小时就懂了回溯,不知道是真懂还是假懂. 这道题很简单.细心就好. 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; int n, ans[25]; const int pn[] = {1,