读写锁详解

1. 综述

  在一些程序中存在读者写者问题,也就是说,对某些资源的访问会存在两种可能的情况,一种是访问必须是排它行的,就是独占的意思,这称作写操作;另一种情况就是访问方式可以是共享的,就是说可以有多个线程同时去访问某个资源,这种就称作读操作。这个问题模型是从对文件的读写操作中引申出来的。
    读写锁比起mutex具有更高的适用性,具有更高的并行性,可以有多个线程同时占用读模式的读写锁,但是只能有一个线程占用写模式的读写锁,读写锁的三种状态:
  (1)当读写锁是写加锁状态时,在这个锁被解锁之前,所有试图对这个锁加锁的线程都会被阻塞
  (2)当读写锁在读加锁状态时,所有试图以读模式对它进行加锁的线程都可以得到访问权,但是以写模式对它进行加锁的线程将会被阻塞
  (3)当读写锁在读模式的锁状态时,如果有另外的线程试图以写模式加锁,读写锁通常会阻塞随后的读模式锁的请求,这样可以避免读模式锁长期占用,而等待的写模式锁请求则长期阻塞。
    读写锁最适用于对数据结构的读操作次数多于写操作的场合,因为,读模式锁定时可以共享,而写模式锁定时只能某个线程独占资源,因而,读写锁也可以叫做个共享-独占锁。
    处理读者-写者问题的两种常见策略是强读者同步(strong reader synchronization)和强写者同步(strong writer synchronization).    在强读者同步中,总是给读者更高的优先权,只要写者当前没有进行写操作,读者就可以获得访问权限;而在强写者同步中,则往往将优先权交付给写者,而读者只能等到所有正在等待的或者是正在执行的写者结束以后才能执行。关于读者-写者模型中,由于读者往往会要求查看最新的信息记录,所以航班订票系统往往会使用强写者同步策略,而图书馆查阅系统则采用强读者同步策略。
    读写锁机制是由posix提供的,如果写者没有持有读写锁,那么所有的读者多可以持有这把锁,而一旦有某个写者阻塞在上锁的时候,那么就由posix系统来决定是否允许读者获取该锁。

2.读写锁相关的API

2.1 初始化和销毁读写锁

  对于读写锁变量的初始化可以有两种方式,一种是通过给一个静态分配的读写锁赋予常值PTHREAD_RWLOCK_INITIALIZER来初始化它,另一种方法就是通过调用pthread_rwlock_init()来动态的初始化。而当某个线程不再需要读写锁的时候,可以通过调用pthread_rwlock_destroy来销毁该锁。函数原型如下:

1 #include
2 int pthread_rwlock_init(pthread_rwlock_t *rwptr, const pthread_rwlockattr_t *attr);
3 int pthread_rwlock_destroy(pthread_rwlock_t *rwptr);

  这两个函数如果执行成功均返回0,如果出错则返回错误码。

  在释放某个读写锁占用的内存之前,要先通过pthread_rwlock_destroy对读写锁进行清理,释放由pthread_rwlock_init所分配的资源。在初始化某个读写锁的时候,如果属性指针attr是个空指针的话,表示默认的属性;如果想要使用非默认属性,则要使用到下面的两个函数:

1 #include
2 int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);
3 int pthread_rwlockattr_destroy(pthread_rwlockatttr_t *attr);

  这两个函数同样的,如果执行成功返回0,失败返回错误码。

  这里还需要说明的是,当初始化读写锁完毕以后呢,该锁就处于一个非锁定状态。数据类型为pthread_rwlockattr_t的某个属性对象一旦初始化了,就可以通过不同的函数调用来启用或者是禁用某个特定的属性。

2.2 获取和释放读写锁

  读写锁的数据类型是pthread_rwlock_t,如果这个数据类型中的某个变量是静态分配的,那么可以通过给它赋予常值PTHREAD_RWLOCK_INITIALIZAR来初始化它。pthread_rwlock_rdlock()用来获取读出锁,如果相应的读出锁已经被某个写入者占有,那么就阻塞调用线程。pthread_rwlock_wrlock()用来获取一个写入锁,如果相应的写入锁已经被其它写入者或者一个或多个读出者占有,那么就阻塞该调用线程;pthread_rwlock_unlock()用来释放一个读出或者写入锁。函数原型如下:

1 #include
2 int pthread_rwlock_rdlock(pthread_rwlock_t *rwptr);
3 int pthread_rwlock_wrlock(pthread_rwlock_t *rwptr);
4 int pthread_rwlock_unlock(pthread_rwlock_t *rwptr);

  这三个函数若调用成功则返回0,失败就返回错误码。要注意的是其中获取锁的两个函数的操作都是阻塞操作,也就是说获取不到锁的话,那么调用线程不是立即返回,而是阻塞执行。有写情况下,这种阻塞式的获取所得方式可能不是很适用,所以,接下来引入两个采用非阻塞方式获取读写锁的函数pthread_rwlock_tryrdlock()和pthread_rwlock_trywrlock(),非阻塞方式下获取锁的时候,如果不能马上获取到,就会立即返回一个EBUSY错误,而不是把调用线程投入到睡眠等待。函数原型如下:

1 #include
2 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwptr);
3 int pthread_rwlock_trywrlock(pthread_rwlock_t *rwptr);

  同样地,这两个函数调用成功返回0,失败返回错误码。

3.例子

https://github.com/helianthuslulu/LINUX_IPC

时间: 2024-10-11 12:33:24

读写锁详解的相关文章

ReentrantReadWriteLock读写锁详解

一.读写锁简介 现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁.在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源:但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写的操作了. 针对这种场景,JAVA的并发包提供了读写锁ReentrantReadWriteLock,它表示两个锁,一个是读操作相关的锁,称为共享锁:一个是写相关的锁,称为排他锁,描述如下: 线程进入读锁的前提条件: 没有其他线程的写锁, 没

怎么看时序图--nand flash的读操作详解(转载)

出处:http://blog.chinaunix.net/uid-28852942-id-3992727.html这篇文章不是介绍 nand flash的物理结构和关于nand flash的一些基本知识的.你需要至少了解 你手上的 nand flash的物理结构和一些诸如读写命令 操作的大概印象,你至少也需要看过 s3c2440中关于nand flash控制寄存器的说明. 由于本人也没有专门学过这方面的知识,下面的介绍也是经验之谈. 这里 我用的 K9F2G08-SCB0 这款nand flas

怎么看时序图--nand flash的读操作详解 (转)

这篇文章不是介绍 nand flash的物理结构和关于nand flash的一些基本知识的.你需要至少了解 你手上的 nand flash的物理结构和一些诸如读写命令 操作的大概印象,你至少也需要看过 s3c2440中关于nand flash控制寄存器的说明. 由于本人也没有专门学过这方面的知识,下面的介绍也是经验之谈. 这里 我用的 K9F2G08-SCB0 这款nand flash 来介绍时序图的阅读.不同的芯片操作时序可能不同,读的命令也会有一些差别. 当然其实有时候像nand flash

Linux内核模块编程与内核模块LICENSE -《详解(第3版)》预读

Linux内核模块简介 Linux内核的整体结构已经非常庞大,而其包含的组件也非常多.我们怎样把需要的部分都包含在内核中呢?一种方法是把所有需要的功能都编译到Linux内核.这会导致两个问题,一是生成的内核会很大,二是如果我们要在现有的内核中新增或删除功能,将不得不重新编译内核. 有没有一种机制使得编译出的内核本身并不需要包含所有功能,而在这些功能需要被使用的时候,其对应的代码被动态地加载到内核中呢?Linux提供了这样的一种机制,这种机制被称为模块(Module).模块具有这样的特点. 模块本

《JSP Web开发详解》粗读(二)

一.JSP技术 1.JSP请求会被编译成Servlet,但只编译一次. 2.JSP语法:元素和模板数据 (1)元素:指令元素.脚本元素和动作元素 (2)指令元素:形式 <%@ directive {attr = "value"}* %> // * 表示1到n ==page,include,taglib (3)page:整个页面,定义与页面相关的属性,共13个属性.language(java).extends(继承).import(类).session(true|false)

mysql事务隔离级别/脏读/不可重复读/幻读详解

一.四种事务隔离级别 1.1 read uncommitted 读未提交 即:事务A可以读取到事务B已修改但未提交的数据. 除非是文章阅读量,每次+1这种无关痛痒的场景,一般业务系统没有人会使用该事务隔离级别,标准实在太宽松了. 1.2 read committed 读已提交(简称RC) 即:事务A只能读取到事务B修改并已提交的数据. 这个级别相对要严格一些,至少是要等其它事务把变更提交到db,才能读取到,听上去蛮靠谱的.但是有些业务场景,比如会员系统中,如果要在一个事务中,多次读取用户身份,判

读文章《Flexbox详解》笔记

文章地址:Flexbox详解 属性摘抄: flex container : display: other values | flex | inline-flex; flex-direction: row | row-reverse | column | column-reverse; 主要用来创建主轴,从而定义了伸缩项目放置在伸缩容器的方向. flex-wrap: nowrap | wrap | wrap-reverse; 主要用来定义伸缩容器里是单行还是多行显示,侧轴的方向决定了新行堆放的方向

mysql 锁详解

锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素. MySQL有3种锁机制,特性可大致归纳如下. ·表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率最高,并发度最低. ·行级锁:开销大,加锁慢:会出现死锁:锁定粒度最小,发生锁冲突的概率最低,并发度也最高. ·

Java并发编程之---Lock框架详解

Java 并发开发:Lock 框架详解 摘要: 我们已经知道,synchronized 是Java的关键字,是Java的内置特性,在JVM层面实现了对临界资源的同步互斥访问,但 synchronized 粒度有些大,在处理实际问题时存在诸多局限性,比如响应中断等.Lock 提供了比 synchronized更广泛的锁操作,它能以更优雅的方式处理线程同步问题.本文以synchronized与Lock的对比为切入点,对Java中的Lock框架的枝干部分进行了详细介绍,最后给出了锁的一些相关概念. 一