题意:输入整数n(1<=n<231),求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小。输出最小的和。
分析:
1、将n分解为a1p1*a2p2……,每个aipi作为一个单独的整数时最优。
2、n为1时,len==0;n为素数时,len==1。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100 + 10; const int MAXT = 10000 + 10; using namespace std; vector<LL> v; void deal(LL n){//将n分解成因子 v.clear(); LL m = (LL)sqrt(n + 0.5); for(LL i = 2; i <= m; ++i){ if(n % i == 0){//n中的质因子 LL tmp = 1; while(n % i == 0 && n > 1){ tmp *= i; n /= i; } v.push_back(tmp);//由质因子i合并成的因子 } if(n <= 1) break; } if(n > 1) v.push_back(n);//素数本身 } int main(){ LL N; int kase = 0; while(scanf("%lld", &N) == 1){ if(!N) return 0; deal(N); LL ans = 0; int len = v.size(); if(len == 0 || len == 1){//1或素数 ans = N + 1; } else{ for(int i = 0; i < len; ++i){ ans += v[i]; } } printf("Case %d: %lld\n", ++kase, ans); } return 0; }
时间: 2024-10-25 12:35:29