傅立叶变换的深入理解
2007年10月05日 星期五 16:41
专题讨论四:关于傅里叶变换的讨论[精彩]有奖征集:大家讨论一下傅里叶变换相关的内容: 1 变换的目的,意义,应用。 2 傅里叶级数与傅里叶变换的差别和联系 3 连续傅里叶变换,离散时间傅里叶变换,离散傅里叶变换,序列的傅里叶变换,各自的定义,差别,联系。 3 高速傅里叶变换的实质,经常使用的算法之间的差别和联系,各自的优势。 4 fft的应用 1、变换是时间变量函数变成相应变换域的某种变量函数,这样使运算简单,处理方便。变换域变换有FT(以频域特性为主要研究对象)、LT与ZT(注重研究极点及零点分析)、DTFT、DFT、FFT、DTWT等。 ****************************************************************************************************************************************************************************** ------------------------------------------------------------------------------------------------------------------------------- 从滤波关点看,复立叶变换相当于等宽带的Q值不等的滤波器组对信号进行滤波,採用常数Q的滤波器组则是小波分析 傅里叶变换(FT)是一种将信号从时域变换到频域的变换形式。它在声学、电信、电力系统、信号处理等领域有广泛的应用。我们希望能在计算机上实现信号的频谱分析或其他工作。计算机对信号的要求是:在时域和频域都应该是离散的,并且都应该是有限长的。而傅里叶变换(FT)仅能处理连续信号,DFT就是应这样的须要而诞生的。它是傅里叶变换在离散域的表示形式。可是一般来说,DFT的运算量是非常大的。在1965年首次提出高速傅里叶变换算法FFT之前,其应用领域一直难以拓展,是FFT的提出使DFT的实现变得接近实时。DFT的应用领域也得以迅速拓展。除了一些速度要求非常高的场合之外,FFT算法基本上能够满足工业应用的要求。因为数字信号处理的其他运算都能够由DFT来实现,因此FFT算法是数字信号处理的重要基石。 ------------------------------------------------------------------------------------------------------------------------------ 对傅立叶变换的理解傅立叶变化是对信号的正交分解,e^jwt经过现行时不变系统后输出信号的形式不变,这不管在理论上还是实践上都有非常大的意义。在数字信号出现后,DFT的高速形式FFT实现了计算机处理信号,提高了它的有用价值。 傅立叶级数一般能够理解为:信号可展开成正交函数线性组合的无穷级数 从物理方面来讨论 还有一种说法,是我从别处看来的 ------------------------------------------------------------------------------------------------------------------------------- 从数学上看,离散傅立叶变换是一个特殊范德尔矩阵的变换,因为这样的矩阵能够分解,才存在高速算法。 1.傅立叶分析的思想最早来自傅立叶对周期函数的研究,通过傅立叶级数能够把周期函数展开成无穷级数的形式. 2.傅立叶级数是以三角函数或指数函数为基对周期信号的无穷级数展开. 3.傅立叶级数(FS) 相应时域连续周期信号 离散傅立叶变换(DFT) 更确切的说是把一个离散非周期信号(N点长的序列)周期延拓成周期信号后,取傅立叶级数的主值区间得到的,所以是一种近似的变换,可是这样的方法却方便计算机计算,随后也就有了高速算法即高速傅立叶变换(FFT) ------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------- 确定F 空间的每个点不仅要观察T 空间的一个点,并且要观察T 空间的全部的点以确定在该F 空间震动的强度(也就是频谱的数值) ------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------- 对于时域上有限的连续信号,同样能够用傅里叶变换分析它, 对于频域上有限的连续信号,同样能够用傅里叶变换分析它, ------------------------------------------------------------------------------------------------------------------------------- 2.傅里叶变换体现了信号的时域与频域之间的一种变换关系,我们能够由傅里叶级数的表达式不是十分严格的推导出来,连续时间信号的频谱是非周期的,而离散时间信号的频谱则是以2*pi为周期延拓的。并且,我们能够看到,傅里叶级数的系数是相应主值区间的非周期信号频谱的採样值;换句话说,一个非周期其信号的频谱是这个信号周期延拓所得信号傅里叶级数系数的包络,两者在採样点上的值是相等的。 3.DTFT与DFT的关系 ------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------- 付立叶变换对于连续时间信号的分析具有重要作用,用于分析信号的频率分量,或将信号在频域上进行处理。引用频域概念后,通信与数学的结合就更加紧密了。通信的发展事实上就是数学的发展。 至于离散付立叶变换,事实上也是对数字信号变换到频域进行分析处理,它对数字信号处理的作用相当大。数字信号处理脱离了模拟时期对信号进行处理全然依赖于器件的境况,能够直接通过计算来进行信号处理。如数字滤波器,仅仅是用系统的系数对进入的数字信号进行一定的计算,信号出系统后即得到处理后的数据在时域上的表达。 离散付立叶变换在理解上与连续信号的付立叶变换不太同样,主要是离散信号的付立叶变换汲及到周期延拓,以及圆周卷积等。 高速离散付叶变换事实上是一种对付立叶变换的算法,它的出现攻克了离散付立叶变换的计算量极大、不有用的问题,使付立叶变换的计算量降低了一个或几个数量级,从而使离散付立叶变换得到了广泛应用。另外,FFT的出现也攻克了相当多的计算问题,使得其他计算也能够通过FFT来解决。 ------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------- 傅氏级数与傅氏变换眼下我们熟悉的是信号幅度随着时间变化而变化的常见表示方式,比方正弦信号的幅度随着时间按正弦函数的规律变化;还有一方面,对于正弦信号,假设知道其振幅、频率和相位,则正弦信号的波形也惟一确定。依据这个原理和傅里叶级数理论,满足一定条件的周期信号都能够分解为不同频率的正弦分量的线性组合,从而我们用各个正弦分量的频率-幅度、频率-相位来表示周期信号的描写叙述方式就称为周期信号的频谱表示,随着对信号研究的深入,我们将周期信号的频谱表示又推广到非周期信号的频谱表示,即通常的傅里叶变换。 ------------------------------------------------------------------------------------------------------------------------------- 高速傅里叶变换 fast Fourier trans formation 进行有限离散傅里叶变换(DFT)的高速算法。简称FFT。一个复杂的波形能够分解为一系列谐波。针对这一物理现象,在数学上建立并发展了一套有效的研究方法,这就是傅里叶分析。利用电子计算机进行傅里叶分析,主要处理离散函数的傅里叶展开,也就是三角函数的插值问题 。一维DFT所作的工作主要是把一个N元数组A(i)(i=0,1,…,N-1)通过一种线性变换变成还有一个N元数组X(i)(i=0 ,…N ,-1 ) 。假设直接计算全部数组元素大约须要进行 N2次的乘法和加法运算,当N非常大时其计算量是非常惊人的 。1965年美国人库利和图基提出一种能大幅度降低运算次数的高速算法,即FFT算法 ,它的基本原 理是将一个变换分解为两个变换的乘积,并利用三角函数的周期性质,将原先的变换公式又一次组合为新的公式 ,从而把运算次数降低到 Nlog2N 的量级 。这就是说,FFT算法比DFT算法提高工效 N/log2N倍 ,比如N=220时,约提高5万倍速度,可见当N非常大时,这是一个了不起的提高。FFT技术在谱分析、数字滤波、结构分析 、系统分析、图像与信号处理,以及物探、天线、雷达、卫星 、医疗等众多技术领域已获得成功的应用。 ------------------------------------------------------------------------------------------------------------------------------- 1.这些变换的实质都一样,都是将一个复杂信号在一正交系中进行分解,不同在于选择的基不同.付氏变换选择的是复指数与三角基,小波变换选择了其他的基. ------------------------------------------------------------------------------------------------------------------------------- 傅立叶级数是周期信号的还有一种时域的表达方式,也就是正交的级数,它不同频率的波形的叠加。 ------------------------------------------------------------------------------------------------------------------------------- |