一步一步写算法(之循环单向链表)

原文:一步一步写算法(之循环单向链表)

【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】

前面的博客中,我们曾经有一篇专门讲到单向链表的内容。那么今天讨论的链表和上次讨论的链表有什么不同呢?重点就在这个"循环"上面。有了循环,意味着我们可以从任何一个链表节点开始工作,可以把root定在任何链表节点上面,可以从任意一个链表节点访问数据,这就是循环的优势。

那么在实现过程中,循环单向链表有什么不同?

1)打印链表数据

void print_data(const LINK_NODE* pLinkNode)
{
	LINK_NODE* pIndex = NULL;
	if(NULL == pLinkNode)
		return;

	printf("%d\n", pLinkNode->data);
	pIndex = pLinkNode->next;
	while(pLinkNode != pIndex){
		printf("%d\n", pIndex->data);
		pIndex = pIndex ->next;
	}
}

以往,我们发现打印数据的结束都是判断指针是否为NULL,这里因为是循环链表所以发生了变化。原来的条件(NULL != pLinkNode)也修改成了这里的(pLinkNode != pIndex)。同样需要修改的函数还有find函数、count统计函数。

2)插入数据

STATUS insert_data(LINK_NODE** ppLinkNode, int data)
{
	LINK_NODE* pNode;
	if(NULL == ppLinkNode)
		return FALSE;

	if(NULL == *ppLinkNode){
		pNode = create_link_node(data);
		assert(NULL != pNode);

		pNode->next = pNode;
		*ppLinkNode = pNode;
		return TRUE;
	}

	if(NULL != find_data(*ppLinkNode, data))
		return FALSE;

	pNode = create_link_node(data);
	assert(NULL != pNode);

	pNode->next = (*ppLinkNode)->next;
	(*ppLinkNode)->next = pNode;
	return TRUE;
}

这里的insert函数在两个地方发生了变化:

a)如果原来链表中没有节点,那么链表节点需要自己指向自己

b)如果链表节点原来存在,那么只需要在当前的链表节点后面添加一个数据,同时修改两个方向的指针即可

3) 删除数据

STATUS delete_data(LINK_NODE** ppLinkNode, int data)
{
	LINK_NODE* pIndex = NULL;
	LINK_NODE* prev = NULL;
	if(NULL == ppLinkNode || NULL == *ppLinkNode)
		return FALSE;

	pIndex = find_data(*ppLinkNode, data);
	if(NULL == pIndex)
		return FALSE;

	if(pIndex == *ppLinkNode){
		if(pIndex == pIndex->next){
			*ppLinkNode = NULL;
		}else{
			prev = pIndex->next;
			while(pIndex != prev->next)
				prev = prev->next;

			prev->next = pIndex->next;
			*ppLinkNode = pIndex->next;
		}
	}else{
		prev = pIndex->next;
		while(pIndex != prev->next)
			prev = prev->next;
		prev->next = pIndex->next;
	}

	free(pIndex);
	return TRUE;
}

和添加数据一样,删除数据也要在两个方面做出改变:

a)如果当前链表节点中只剩下一个数据的时候,删除后需要设置为NULL

b)删除数据的时候首先需要当前数据的前一个数据,这个时候就可以从当前删除的数据开始进行遍历

c) 删除的时候需要重点判断删除的数据是不是链表的头结点数据

【预告: 下一篇博客介绍单向链表的反转】

时间: 2024-11-05 12:14:48

一步一步写算法(之循环单向链表)的相关文章

一步一步写算法(之单向链表)

原文:一步一步写算法(之单向链表) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 有的时候,处于内存中的数据并不是连续的.那么这时候,我们就需要在数据结构中添加一个属性,这个属性会记录下面一个数据的地址.有了这个地址之后,所有的数据就像一条链子一样串起来了,那么这个地址属性就起到了穿线连结的作用. 相比较普通的线性结构,链表结构的优势是什么呢?我们可以总结一下: (1)单个节点创建非常方便,普通的线性内存通常在创建的时候就需要设定数据的

01-(2)数据结构- 一步一步写算法(之单向链表)

有的时候,处于内存中的数据并不是连续的.那么这时候,我们就需要在数据结构中添加一个属性,这个属性会记录下面一个数据的地址.有了这个地址之后,所有的数据就像一条链子一样串起来了,那么这个地址属性就起到了穿线连结的作用. 相比较普通的线性结构,链表结构的优势是什么呢?我们可以总结一下: (1)单个节点创建非常方便,普通的线性内存通常在创建的时候就需要设定数据的大小 (2)节点的删除非常方便,不需要像线性结构那样移动剩下的数据 (3)节点的访问方便,可以通过循环或者递归的方法访问到任意数据,但是平均的

01-(2)数据结构- 一步一步写算法(之循环单向链表)

前面的博客中,我们曾经有一篇专门讲到单向链表的内容.那么今天讨论的链表和上次讨论的链表有什么不同呢?重点就在这个"循环"上面.有了循环,意味着我们可以从任何一个链表节点开始工作,可以把root定在任何链表节点上面,可以从任意一个链表节点访问数据,这就是循环的优势. 那么在实现过程中,循环单向链表有什么不同? 1)打印链表数据 [cpp] view plain copy void print_data(const LINK_NODE* pLinkNode) { LINK_NODE* pI

循环单向链表(约瑟夫环)

#include <stdio.h> #include <stdlib.h> typedef struct List { int data; struct List *next; }List; //创建循环单向链表n为长度 List *list_create(int n) { List *head, *p; int i; head = (List *)malloc(sizeof(List)); p = head; p->data = 1; //创建第一个结点 for (i =

数据结构之自建算法库——循环双链表

本文针对数据结构基础系列网络课程(2):线性表中第13课时循环链表. 按照"0207将算法变程序"[视频]部分建议的方法,建设自己的专业基础设施算法库. 双链表算法库算法库采用程序的多文件组织形式,包括两个文件: 1.头文件:cdlinklist.h,包含定义双链表数据结构的代码.宏定义.要实现算法的函数的声明: #ifndef CDLINKLIST_H_INCLUDED #define CDLINKLIST_H_INCLUDED //循环双链表基本运算函数 typedef int E

数据结构之自建算法库——循环单链表

本文针对数据结构基础系列网络课程(2):线性表中第13课时双链表. 按照"0207将算法变程序"[视频]部分建议的方法,建设自己的专业基础设施算法库. 双链表算法库算法库采用程序的多文件组织形式,包括两个文件: 1.头文件:clinklist.h,包含定义双链表数据结构的代码.宏定义.要实现算法的函数的声明: #ifndef CLINKLIST_H_INCLUDED #define CLINKLIST_H_INCLUDED //循环单链表基本运算函数 typedef int ElemT

使用java的循环单向链表解决约瑟夫问题

什么是约瑟夫问题 据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止.然而Josephus 和他的朋友并不想遵从.首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人.接着,再越过k-1个人,并杀掉第k个人.这

学点PYTHON基础的东东--数据结构,算法,设计模式---单向链表

看来看来,还是以下这个实现最优雅.. 其它的,要么NODE冗余,要么初始化丑陋... #!/usr/bin/env python # -*- coding: utf-8 -*- class Node: def __init__(self, initdata): self.__data = initdata self.__next = None def getData(self): return self.__data def getNext(self): return self.__next d

一步一步写算法(之双向链表)

原文:一步一步写算法(之双向链表) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前面的博客我们介绍了单向链表.那么我们今天介绍的双向链表,顾名思义,就是数据本身具备了左边和右边的双向指针.双向链表相比较单向链表,主要有下面几个特点: (1)在数据结构中具有双向指针 (2)插入数据的时候需要考虑前后的方向的操作 (3)同样,删除数据的是有也需要考虑前后方向的操作 那么,一个非循环的双向链表操作应该是怎么样的呢?我们可以自己尝试一下: (