题目:
The Water Bowls
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5013 | Accepted: 1960 |
Description
The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls
to be right-side-up and thus use their wide snouts to flip bowls.
Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).
Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?
Input
Line 1: A single line with 20 space-separated integers
Output
Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0‘s.
Sample Input
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
Sample Output
3
Hint
Explanation of the sample:
Flip bowls 4, 9, and 11 to make them all drinkable:
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state]
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4]
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]
Source
题意:有20个碗,翻转一个碗会连同翻转他旁边的碗,问最少翻几次可以把碗全部翻到正面。
思路:这道题和POJ1753很像,先用高斯消元法求出自由变元,然后枚举求出最小值。
代码:
#include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include<climits> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> using namespace std; #define PB push_back #define MP make_pair #define REP(i,x,n) for(int i=x;i<(n);++i) #define FOR(i,l,h) for(int i=(l);i<=(h);++i) #define FORD(i,h,l) for(int i=(h);i>=(l);--i) #define SZ(X) ((int)(X).size()) #define ALL(X) (X).begin(), (X).end() #define RI(X) scanf("%d", &(X)) #define RII(X, Y) scanf("%d%d", &(X), &(Y)) #define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z)) #define DRI(X) int (X); scanf("%d", &X) #define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y) #define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z) #define OI(X) printf("%d",X); #define RS(X) scanf("%s", (X)) #define MS0(X) memset((X), 0, sizeof((X))) #define MS1(X) memset((X), -1, sizeof((X))) #define LEN(X) strlen(X) #define F first #define S second #define Swap(a, b) (a ^= b, b ^= a, a ^= b) #define Dpoint strcut node{int x,y} #define cmpd int cmp(const int &a,const int &b){return a>b;} /*#ifdef HOME freopen("in.txt","r",stdin); #endif*/ const int MOD = 1e9+7; typedef vector<int> VI; typedef vector<string> VS; typedef vector<double> VD; typedef long long LL; typedef pair<int,int> PII; //#define HOME int Scan() { int res = 0, ch, flag = 0; if((ch = getchar()) == '-') //判断正负 flag = 1; else if(ch >= '0' && ch <= '9') //得到完整的数 res = ch - '0'; while((ch = getchar()) >= '0' && ch <= '9' ) res = res * 10 + ch - '0'; return flag ? -res : res; } /*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/ const int MAXN=50; int a[MAXN][MAXN];//增广矩阵 int x[MAXN];//解集 int free_x[MAXN];//标记是否是不确定的变元 /* void Debug(void) { int i, j; for (i = 0; i < equ; i++) { for (j = 0; j < var + 1; j++) { cout << a[i][j] << " "; } cout << endl; } cout << endl; } */ inline int gcd(int a,int b) { int t; while(b!=0) { t=b; b=a%b; a=t; } return a; } inline int lcm(int a,int b) { return a/gcd(a,b)*b;//先除后乘防溢出 } // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解, //-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数) //有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var. int Gauss(int equ,int var) { int i,j,k; int max_r;// 当前这列绝对值最大的行. int col;//当前处理的列 int ta,tb; int LCM; int temp; int free_x_num; int free_index; for(int i=0;i<=var;i++) { x[i]=0; free_x[i]=0; } free_x_num=0; //转换为阶梯阵. col=0; // 当前处理的列 for(k = 0;k < equ && col < var;k++,col++) {// 枚举当前处理的行. // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差) max_r=k; for(i=k+1;i<equ;i++) { if(abs(a[i][col])>abs(a[max_r][col])) max_r=i; } if(max_r!=k) {// 与第k行交换. for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]); } if(a[k][col]==0) {// 说明该col列第k行以下全是0了,则处理当前行的下一列. k--; free_x[free_x_num++]=col; continue; } for(i=k+1;i<equ;i++) {// 枚举要删去的行. if(a[i][col]!=0) { LCM = lcm(abs(a[i][col]),abs(a[k][col])); ta = LCM/abs(a[i][col]); tb = LCM/abs(a[k][col]); if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加 for(j=col;j<var+1;j++) { a[i][j] = a[i][j]^a[k][j]; } } } } // Debug(); // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0). for (i = k; i < equ; i++) { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换. if (a[i][col] != 0) return -1; } // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵. // 且出现的行数即为自由变元的个数. // 首先,自由变元有var - k个,即不确定的变元至少有var - k个. return var - k; // 自由变元有var - k个. // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵. // 计算出Xn-1, Xn-2 ... X0. } int main() {for(int i=0;i<20;i++) RI(a[i][20]); for(int i=0;i<20;i++) { a[i][i]=1; if(i!=0) a[i-1][i]=1; if(i!=19) a[i+1][i]=1; } int t=Gauss(20,20); int tot=1<<t; int ans=INT_MAX; for(int i=0;i<tot;i++) { int cnt=0; MS0(x); for(int j=0;j<t;j++) { if(i&(1<<j)) { x[free_x[j]]=1; if(x[free_x[j]]) cnt++; } } for(int j=19-t;j>=0;j--) { int temp=a[j][20]; for(int k=j+1;k<20;k++) { if(a[j][k]) temp^=x[k]; } x[j]=temp; if(x[j]) cnt++; } ans=min(ans,cnt); } printf("%d\n",ans); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。