中序遍历 后序遍历 恢复二叉树

中序遍历:dbeafc

后序遍历:debfca

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void RestoreTree(char *in,char *post,int len ,int treeLen,char* out, int index)
{
	if(index>=treeLen) return;
	out[index] = post[len-1];
	int i = 0;
	for(; i < len; i++)
	{
		if(in[i] == post[len-1])
				  break;
	} 

	RestoreTree(in, post, i ,treeLen,out,index*2+1);
	RestoreTree(in+i+1, post + i, len-i-1,treeLen,out,index*2+2);
} 

int main(int argc, char** argv) {

	char in[] ="dbeafc";
	char post[]="debfca";
	int len = strlen(in);
	char *out = new char[len+1];

	memset(out,0,len+1);
	RestoreTree(in,post,len,len,out,0);
	puts(out);

	delete []out;
	return 0;
}

中序遍历 后序遍历 恢复二叉树

时间: 2024-10-18 01:42:55

中序遍历 后序遍历 恢复二叉树的相关文章

【基础备忘】 二叉树前序、中序、后序遍历相互求法

转自:http://www.cnblogs.com/fzhe/archive/2013/01/07/2849040.html 今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2

树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

最近学习树的概念,有关二叉树的实现算法记录下来... 不过学习之前要了解的预备知识:树的概念:二叉树的存储结构:二叉树的遍历方法.. 二叉树的存储结构主要了解二叉链表结构,也就是一个数据域,两个指针域,(分别为指向左右孩子的指针),从下面程序1,二叉树的存储结构可以看出. 二叉树的遍历方法:主要有前序遍历,中序遍历,后序遍历,层序遍历.(层序遍历下一篇再讲,本篇主要讲的递归法) 如这样一个二叉树: 它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左子树,再前序遍历右子树) 它

二叉树各种相关操作(建立二叉树、前序、中序、后序、求二叉树的深度、查找二叉树节点,层次遍历二叉树等)(C语言版)

将二叉树相关的操作集中在一个实例里,有助于理解有关二叉树的相关操作: 1.定义树的结构体: 1 typedef struct TreeNode{ 2 int data; 3 struct TreeNode *left; 4 struct TreeNode *right; 5 }TreeNode; 2.创建根节点: 1 TreeNode *creatRoot(){ 2 TreeNode * root =(TreeNode *)malloc(sizeof(TreeNode)); 3 if(NULL=

二叉树的前序、中序、后序遍历的递归和非递归算法实现

1 /** 2 * 二叉树的前序.中序.后序遍历的递归和非递归算法实现 3 **/ 4 5 //二叉链表存储 6 struct BTNode 7 { 8 struct BTNode *LChild; // 指向左孩子指针 9 ELEMENTTYPE data; // 结点数据 10 struct BTNode *RChild; // 指向右孩子指针 11 }; 12 13 /** 14 * 前序遍历 15 **/ 16 // 递归实现 17 void PreorderTraversal(BTNo

二叉树前序、中序、后序遍历相互求法

今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2.访问根节点     3.中序遍历右子树 后序遍历:     1.后序遍历左子树     2.后序遍历右子树     3.访问

二叉树遍历(前序、中序、后序、层次、深度优先、广度优先遍历)

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有深度遍历和广度遍历,深度遍历有前序.中序以及后序三种遍历方法,广度遍历即我们平常所说的层次遍历.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁,而对于广度遍历来说,需要其他数据结构的支撑,比如堆了.所以,对于一段代码来说,可读性有时候要比代码本身的效率要重要的多. 四种主要的遍历思想为: 前序遍历:根结点 ---> 左子树 ---> 右子树 中序遍历:左子

关于二叉树的问题1-已知前序,中序求后序遍历

对于一棵二叉树而言,可以由其前序和中序或者中序和后序的遍历序列,确定一棵二叉树. 那么对于已知前序和中序序列,求后序序列也就是先还原二叉树,然后对其进行后序遍历即可. 二叉树结点的结构定义如下: struct TreeNode { char value; TreeNode *leftChild; TreeNode *rightChild; }; 实现代码如下: #include <stdio.h> #include <string.h> #include <stdlib.h&

二叉树高度,以及栈实现二叉树的先序,中序,后序遍历的非递归操作

求解二叉树的高度 树是递归定义的,所以用递归算法去求一棵二叉树的高度很方便. #include <iostream> #include <cstdio> using namespace std; struct Node { char data; Node *lchild; Node *rchild; }; void High(Node *T, int &h) { if (T == NULL) h = 0; else { int left_h; High(T->lchi

[LeetCode] Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树

Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume that duplicates do not exist in the tree. 这道题要求从中序和后序遍历的结果来重建原二叉树,我们知道中序的遍历顺序是左-根-右,后序的顺序是左-右-根,对于这种树的重建一般都是采用递归来做,可参见我之前的一篇博客Convert Sorted Array to Bin