射频识别 (RFID) 技术

1. 什么是射频识别 (RFID) 技术?

射频识别 (RFID) 技术可使用无线广播通信对对象或人进行唯一识别,是当今发展速度最快的自动数据采集 (ADC) 技术之一。

RFID 开创了一种可自动收集产品、位置、时间或事务处理等信息的新方法,既简单快捷,又不会出现人为错误。

它提供了一种无需视线触及的非接触式数据链路,例如硬纸板盒内的物品,或者有关更严苛或更恶劣环境中的信息,这些环境将严重制约其它自动 ID
技术(例如条形码等)。

此外,RFID 不仅是一个 ID 代码,其还可用作数据载体,将信息即时写入和更新到相关标签上。

2. 完整的 RFID 系统包含哪些组件?

RFID 系统包含众多组件,如标签、手持式或固定式读取器、天线以及系统软件等。

读取器由发送器、接收器、控制模块和通信功能构成。从无线电广播的角度讲,读取器有时也称为收发器,因为它可以链接至控制 PC。

应答器或标签可用于进行对象识别,能编入与对象相关的独特信息。

读取器应配套提供一根用于收发射频信号的天线。每个读取器都附带与 PC 兼容的软件,以便用户能够读取标签并对其进行编程。

要求具备串行通信端口 RS232 或 RS422/485。


Half-Duplex (HDX) LF


How HDX works

TI’s fundamental LF design uses half-duplex (HDX) RF communication.

In an HDX system, data communicated between the RF transponder, or tag, and
the reader is only traveling in one direction at a time.

The RF reader sends a signal to the tag to activate it, and subsequently
shuts down to “listen” to the tag’s response.

TI’s transponders incorporate a charge capacitor, which acts like a
battery.

The energy stored in the tag’s charge capacitor is used to return data to the
reader via a FM signal versus an AM signal
(full-duplex (FDX) systems).

In other words, HDX systems use the stored energy to respond in “radio
silence” after the carrier (reader) signal is turned off.

 

HDX key benefits


  • Improved RF noise immunity: 
    Because the reader
    shuts down during the tag’s response, HDX systems are not fighting against RF
    noise associated with the reader.
    In addition, TI’s HDX tags are frequency
    shift keyed.
    This means the digital FM response from the tag to the reader
    uses two LF channels to return the data making the tags more able
    to be
    read in noisy electromagnetic interference (EMI) environments typical of RFID
    applications.
    Also, applications that require tags be much closer
    together, such as in livestock or fish tracking,
    can be more reliably read
    versus FDX systems which may miss tags.

  • 50 percent greater read range vs. FDX: 
    TI’s HDX
    technology boosts read range by 50 percent versus FDX.
    An improved read
    range means more flexibility in designing your LF application and less of a
    redundant infrastructure needed for RF antennas.
    Using HDX, allows you to
    design much lower cost antennas and equipment compared to an FDX
    implementation.

  • “First Read” performance: 
    HDX systems only have
    to read a transponder once – a 16 bit checksum programmed into the TI chip
    validates the read and ensures that it is good
    versus FDX systems that may
    have to make multiple reads on a tag, particularly in noisy RF
    environments.

  • Tag read speed: 25-30 TI HDX transponders can be
    read per second, which is comparable to FDX systems that do not contain a
    charge capacitor

RFID chips use radio signals to transmit data over short
distances.

They are used typically for security, tracking, and
identification purposes.

RFID chips can be paired with other circuitry to create tags
or readers that also use radio frequency identification (RFID) technology.

How RFID Chips Work


RFID chips wirelessly transmit their unique serial-number
identifiers, even when embedded in objects such as clothing or currency.

When an RFID reader broadcasts a request for this
information, the RFID tag that contains the corresponding ID code responds with
a transmission.

Some of these RFID devices do not have batteries, and are
instead powered by the radio signals themselves.

This diagram shows the role of an RFID chip in a
transponder.

Picture: sample circuit of the power supply and load modulator in a
transponder

Picture above:

If the additional load resistor in the transponder is switched on and off at
a very high elementary frequency fH,

then two spectral lines are created at a distance of ±fH around the
transmission frequency of the reader,

and these can be easily detected (however fH must be less than fREADER).

In the terminology of radio technology the new elementary frequency is called
a subcarrier.

Data transfer is by the ASK, FSK or PSK modulation of the subcarrier in time
with the data flow.

This represents an amplitude modulation of the subcarrier.

Backscatter Coupling (3.2.2)

We know from the field of RADAR technology that electromagnetic waves are
reflected by objects with dimensions greater than around half the wavelength of
the wave.

The efficiency with which an object reflects electromagnetic waves is
described by its reflection cross-section.

Objects that are in resonance with the wave front that hits them, as is the
case for antenna at the appropriate frequency for example, have a particularly
large reflection cross-section.

Picture: Operation principle of a backscatter transponder

Power P1 is emitted from the reader‘s antenna, a small proportion of which
(free space attenuation) reaches the transponder‘s antenna.

The power P1‘ is supplied to the antenna connections as HF voltage and after
rectification by the diodes D1 and D2 this can be used as turn on voltage for
the deactivation or activation of the power saving "power-down" mode.

The diodes used here are low barrier Schottky diodes, which have a
particularly low threshold voltage.

The voltage obtained may also be sufficient to serve as a power supply for
short ranges.

A proportion of the incoming power P1‘ is reflected by the antenna and
returned as power P2.

The reflection characteristics (= reflection cross-section) of the antenna
can be influenced by altering the load connected to the antenna.

In order to transmit data from the transponder to the reader, a load resistor
RL connected in parallel with the antenna is switched on and off in time with
the data stream to be transmitted.

The amplitude of the power P2 reflected from the transponder can thus be
modulated (à modulated backscatter).

The power P2 reflected from the transponder is radiated into free space.

A small proportion of this (free space attenuation) is picked up by the
reader‘s antenna.

The reflected signal
therefore travels into the antenna connection of the reader in the "backwards
direction" and can be decoupled using a directional coupler and transferred to
the receiver input of a reader.

The "forward" signal of the
transmitter, which is stronger by powers of ten, is to a large degree suppressed
by the directional coupler.

The ratio of power transmitted by the reader and power returning from the
transponder (P1 / P2) can be estimated using the radar equation

(for a more detailed explanation, please refer to the chapter 4 "Physical
Principles" of the RFID-handbook).

Types of RFID Chips

The GlobalSpec SpecSearch database categorizes RFID chips
according to the type of device (passive, active, or semi-passive) in which the
chips are used.

  • Passive devices are RFID tags without batteries.

    They draw power from the magnetic field that is created when radio waves
    reach the chip‘s antenna.
    Using this generated power, passive RFID devices
    transmit information that is stored on the chip.

  • Active devices are RFID tags that use a battery to
    power the microchip‘s circuitry and transmit a signal to the reader.

    Active tags can be read from distances of 100 ft. or more.

  • Semi-passive devices are similar to active tags, but
    only use the battery to run the microchip‘s circuitry.
    To communicate with
    the reader, these tags draw power from the magnetic field that is created.

    Some semi-passive tags "sleep" until "awakened" by a signal from the
    reader.

Suppliers may also designate their products as encrypted or
short-range.

Performance Specifications


RFID chips may be equipped with a serial, wireless, TTL, or
I2C interface.
Frequency, memory, read rate, detection range and operation
temperature are the key performance specifications to consider. 
When
specifying the frequency, industrial buyers should note that products use low,
high, ultra-high and microwave frequencies.
Each has advantages and
disadvantages, depending upon the user‘s application.

Features and Applications


Like other types of radio frequency identification (RFID)
products, some chips can operate without physical contact between the tag and
the reader.
Portability, encryption, and continuous reporting are also
important features to consider, depending upon the application.

http://www.apdanglia.org.uk/rfidbasics.html

How
do RFIDs work.

时间: 2024-08-07 01:21:52

射频识别 (RFID) 技术的相关文章

RFID技术将改变仓储管理模式 提升物流仓储服务

RFID技术应用:将改变以往的管理模式 超高频RFID系统利用雷达反射原理,读写器通过天线向电子标签发出微波查询信号,电子标签被读写器微波能量激活,接受到微波信号后应答并发出带有标签数据信息的回波信号.射频识别技术的基本特点是采用无线电技术实现对静止的或移动的物体进行识别,达到确定待识别物体的身份.提取待识别物体的特征信息(或标识信息)的目的. 通过射频识别系统采集到的待识别物体的特征信息通常情况下先由中间软件进行处理,或直接将采集到的识别信息通过计算机信息处理技术(如数据库技术等)及计算机网络

RFID技术应用与七大特点

RFID在近两年已经成为了市场的热点,随着微型集成电路的进步,微型智能RFID标签得到了很大发展,在低功耗IC技术方面的突破,为发展小型.低功耗主动式标签创造了条件.被动式标签无需电池,由读写器产生的磁场中获得工作所需的能量,但读取距离较近,且单向通信,局限性较大,RFID主动式电子标签不但具备被动式电子标签的所有特性,而且还具读取距离更远,双向通讯,寿命更长,性能更可靠等优点. 什么是RFID? RFID 是Radio Frequency Identification的缩写,即无线射频识别.常

RFID技术在物流行业的应用分析

以RFID等先进的信息技术为依托,不仅能使管理者显著地降低经营和管理成本,也能大幅提高企业的资本生产率和劳动生产率,对于物流行业尤其如此. RFID作为前端的自动识别与数据采集技术在物流的各主要作业环节中应用,可以实现物品跟踪与信息共享,极大地提高物流企业的运行效率,实现可视化供应链管理,在物流行业有着巨大的应用空间和发展潜力,在物流信息化中占有举足轻重的地位. RFID开发和应用要有重点 建议物流业RFID的开发瞄准下列六个方向: 1.针对物流行业应用RFID技术进展缓慢的现状,支持开发适用于

RFID技术大显身手在零售业领域备受青睐

近年来,RFID技术步入了发展的快车道,在很多领域都得以广泛应用.零售企业最注重的需求包括企业的利润.销售.业务智能化这三大块,而RFID技术在零售业的应用则成功的帮助企业提高了生产和销售效率,增加了企业利润,同时还改变了用户的消费体验. RFID技术迎飞速发展 在零售业领域大显身手 RFID技术为零售业带来了切切实实的利益,这也无外乎零售企业对其青眼有加.那么,在零售业领域,RFID技术是如何施展其身手呢? 众所周知,零售业从采购.存储.包装.装卸.运输.配送.销售到服务,整个供应链上环环相扣

RFID技术如何使用?

射频识别(RFID)是一种使用内置芯片作为追踪.鉴定方式的便捷技术.现在,许多人都在自己的宠物身体内植入RFID芯片,这样即使它们没有戴项圈也可以被识别. 随着越来越多的RFID产品被投入使用,有一部分宗教和隐私权拥护者对此表示反对.然而,实际上,RFID并没有那么可怕,我们应该接纳它. RFID技术使用的问题以及解决方法: 如今,一些学校要求学生佩戴RFID证章,这样校方就能追踪学生在校园内的行踪,以获得赞助并解决逃课问题.在一所学校,有一名学生出于信仰和隐私问题拒绝佩戴证章,校方对她进行停课

物联网RFID技术在智能交通系统的应用

随着经济的发展和社会的进步,城市人口增多,汽车数量持续增加,交通拥挤和堵塞现象日趋严重,由此引发的环境噪声.大气污染.能源消耗等已经成为现在全球各工业发达国家和发展中国家面临的严峻问题.智能交通系统作为近十年大规模兴起的改善交通堵塞减缓交通拥挤的有效技术措施,越来越收到国内外政府决策部门和专家学者的重视,在许多国家和地区也开始了广泛的应用. 随着近两年物联网技术在国内的迅捷发展,智能交通领域被赋予了更多的科技内涵,在技术手段和管理理念上也引起了革命性变革. 物联网指通过射频识别.传感器网络.全球

浅谈RFID技术在电子巡更中的作用

"电子巡更机",很多人都不太认识这个是什么? 那么对于电子技术专业的人来说,如果,说起"RFID" 可能就会认识.今天我们来聊一聊,基于RFID技术的智能巡更系统.我们都知道读卡技术中,基于RFID(无线射频技术)它是有着本身的特殊性,它能通过识别线圈芯片,通过无线识别来探测到相应的物体.最常见的应用是在我们熟知的图书馆,门禁系统,食品安全溯源等.它通过把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品.某些标签在识别时从识别器发出的电磁场中就可以得到能量

RFID技术与条码技术的比较

RFID技术和条码技术都是物联网时代的一种自动识别技术,都是对物体贴上标签进行标识.但是在具体的技术原理.行业应用上却有着非常大的差别.我们都很熟悉条码,在日常的生活中经常会见到,比如超市购买的商品,图书上等有一维条码,在结账的时候,售货人员会利用条码扫描仪进行扫描.二维条码也是我们比较熟悉的,比如现在的智能设备可以读取二维码,实现信息的识读,二维码在微信等APP已经非常的普遍.RFID技术现在也逐渐的出现在我们的生活当中,比如现在大型超市部分商品都贴上了RFID电子标签,主要是化妆品.衣服等,

【转】目前最常见的”无线通信(数据)传输技术“有哪些?

近年来,随着电子技术.计算机技术的发展,无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的.无线通信种类进行了分析对比,方便大家参考了解. 一.无线通信(数据)传输方式及技术原理 无线通信是利用电磁波信号在自由空间中传播的特性进行信息交换的一种通信方式.无线通信技术自身有很多优点,成本较低,无线通信技术不必建立物理线路,更不用大量的人力去铺设电缆,而且无线通信技术不受工业环境的限制,对抗环境的变化能力较强,故障诊断也较为容易,相对于传统的有