求任意多边形的面积--差称法

#define LL long long
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>

using namespace std;
typedef struct{
	int x,y;
} point;

double areafun(point a[],int n){
	int i,j;
	double area = 0;
	for(i = 0;i < n;i++){
		j  = (i+1)%n;

		area += a[i].x * a[j].y;
		area -= a[i].y * a[j].x;
	}
	area /= 2.0;
	return fabs(area);
}
int main(){
	int n;
	point a[105];

	while(cin >> n,n){
		for(int i = 0;i < n;i++){
			cin >> a[i].x >> a[i].y;
		}
		printf("%.1lf\n",areafun(a,n));
	}
	return 0;
}

注意点的输入必须时有序的!

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-15 03:49:30

求任意多边形的面积--差称法的相关文章

求任意多边形的面积(转)

原文地址:http://blog.csdn.net/sun_shine_/article/details/18799739 给定多边形的顶点坐标(有序),让你来求这个多边形的面积,你会怎么做?我们知道,任意多边形都可以分割为N个三角形,所以,如果以这为突破点,那么我们第一步就是把给定的多边形,分割为数个三角形,分别求面积,最后累加就可以了,把多边形分割为三角形的方式多种多样,在这里,我们按照如下图的方法分割: 图1 S点作为起始点(点1),a->e依次作为点2,3…….一个三角形的面积是怎样的呢

计算任意多边形的面积

对于凸多边形,很容易计算,如下图,以多边形的某一点为顶点,将其划分成几个三角形,计算这些三角形的面积,然后加起来即可.已知三角形顶点坐标,其三角形积可以利用向量的叉乘来计算. 对于凹多边形,如果还是按照上述方法划分成三角形,如下图,多边形的面积 = S_ABC + S_ACD + S_ADE, 这个面积明显超过多边形的面积. 我们根据二维向量叉乘求三角形ABC面积时,利用的是 这样求出来的面积都是正数,但是向量叉乘是有方向的,即 是有正负的,如果把上面第三个公式中的绝对值符号去掉,即 ,那么面积

任意多边形的面积(转)

任意多边形的面积 给定多边形的顶点坐标(有序),让你来求这个多边形的面积,你会怎么做?我们知道,任意多边形都可以分割为N个三角形,所以,如果以这为突破点,那么我们第一步就是把给定的多边形,分割为数个三角形,分别求面积,最后累加就可以了,把多边形分割为三角形的方式多种多样,在这里,我们按照如下图的方法分割: 图1 S点作为起始点(点1),a->e依次作为点2,3…….一个三角形的面积是怎样的呢?根据线性代数的知识,我们有如下的三角形面积公式,称之为有向面积(signed area): 将这个行列式

hdu3060Area2(任意多边形相交面积)

链接 多边形的面积求解是通过选取一个点(通常为原点或者多边形的第一个点)和其它边组成的三角形的有向面积. 对于两个多边形的相交面积就可以通过把多边形分解为三角形,求出三角形的有向面积递加.三角形为凸多边形,因此可以直接用凸多边形相交求面积的模板. 凸多边形相交后的部分肯定还是凸多边形,所以只需要判断哪些点是相交部分上的点,最后求下面积. 1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #inc

HDU 2036 求任意多边形面积向量叉乘

三角形的面积可以使用向量的叉积来求: 对于 三角形的面积 等于: [(x2 - x1)*(y3 - y1)- ( y2 - y1 ) * ( x3 - x1 )  ] / 2.0 但是面积是有方向的,对于一个多边形,我们任意选取一点(通常选取 0,0),和多边形的定点相连接, 对于顺序排列的顶点,我们求原点和一对相邻的顶点组成的三角形的叉积,将这些叉积的一半累加起来 由于叉积的方向,在多边形外面的部分会抵消,这样就是多边形的面积了. 最后对结果要取绝对值,因为算出来的叉积有可能是负数: 附上例题

求任意多边形面积 python实现

数学解决方法: 多边形外选取一点,连接各点构成三角形,计算求和......  详细链接  http://blog.csdn.net/hemmingway/article/details/7814494 已知三角形三边长,求三角形面积------>海伦公式  链接:http://www.zybang.com/question/29d209e9732d1f1f6a6de35b94edd3ba.html 由上实现下面python代码   源代码出处  链接: http://blog.csdn.net/

ZOJ 1010 Area 求任意多边形面积

主要判断是否是多边形:1.n<3 : 2.非相邻两条线段不相交 #include <iostream> #include <cmath> #include <stdio.h> using namespace std; #define eps 1e-8 int sig(double x) { if(x<-eps) return -1; if(x>eps) return 1; return 0; } struct point { double x,y; }

Lifting the Stone(求任意多边形的重心)

Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5432    Accepted Submission(s): 2273 Problem Description There are many secret openings in the floor which are covered by a big

根据坐标计算任意多边形的面积

公式: 实际操作中,有一点需要注意,例如从a[0]-a[n-1]保存了n个点的坐标信息,累加求和之前,一定不能忘了a[n]=a[0],然后从1操作到n,例如: 1 double getarea(){ 2 double sum = 0.0; 3 a[n] = a[0]; 4 for(int i = 1;i<=n;i++){ 5 sum += a[i].x*a[i-1].y-a[i-1].x*a[i].y; 6 } 7 return sum/2.0; 8 } 这样,就不会漏掉计算最后一个点与第一个生