$$\bex 0<p<\infty\ra H_p=\dot F^0_{p,2};\quad BMO=\dot F^0_{\infty,2}. \eex$$ see [H. Triebel, Theory of function spaces I, Birkh\"auser,Basel, 1983] Page 244.
[再寄小读者之数学篇](2014-06-23 Hardy 空间、BMO空间与 Triebel-Lizorkin 空间)
时间: 2024-11-06 11:04:48
$$\bex 0<p<\infty\ra H_p=\dot F^0_{p,2};\quad BMO=\dot F^0_{\infty,2}. \eex$$ see [H. Triebel, Theory of function spaces I, Birkh\"auser,Basel, 1983] Page 244.
[再寄小读者之数学篇](2014-06-23 Hardy 空间、BMO空间与 Triebel-Lizorkin 空间)