算法笔记02--归纳法之多项式求职(Horner规则)

多项式求值

假设有n+2个实数a0,a1,...,an和x的序列,求多项式

p_nx = a_nx^n + a_n-1x^n-1 + ...+ a_1x + a_0;

则需要乘法:n+n-1 + ...+2+1 = n(n+1)/2

需要加法:n

可见算法效率为O(n^2)

而p_nx = ((...((((a_n)x + a_n-1)x + a_n-2)x + a_n-3)....)x + a_1x) + a_0

因此思路:

p_0x = a_n

p_1x = xp_0x + a_n-1

p_2x = xp_2x + a_n-2

......

p_nx = xp_n-1x + a_0

时间复杂度:

令T(n)为n次项所需加法和乘法之和,这里假设乘法为O(1)

T(1)= 1+1 = 2

T(2)= T(1)+ 1 +1 = T(1)+2

T(n)= T(n-1) + 1 +1 = T(n-1) + 2

因此 T(n)= T(1) + 2*(n-1) = 2*n = n +n

即乘法n次,加法n次,时间复杂度O(n)

代码:

#include<iostream>

using namespace std;

int solve_px(int a[],int x, int n)
{
	int px = a[0];
	for(int i =1; i<n;i++)
	{
		px = px*x + a[i];
	}
	return px;
}

int main()
{
	//px4 = 3*x^4+6*x^3+2*x^2+5*x+6
	//px0 =         3(a[0])
	//px1 = x*px0 + 6(a[1])
	//px2 = x*px1 + 2(a[2])
	//px3 = x*px2 + 5(a[3])
	//px4 = x*px3 + 6(a[4])

	int a[5] = {3,6,2,5,6};
	int x = 2;
	cout<<solve_px(a,x,5)<<endl;
	return 1;
}

时间: 2024-08-28 10:30:44

算法笔记02--归纳法之多项式求职(Horner规则)的相关文章

数据结构与算法笔记 - 绪论

数据结构与算法笔记 - 绪论 1. 什么是计算2. 评判DSA优劣的参照(直尺)3. 度量DSA性能的尺度(刻度)4. DSA的性能度量的方法5. DSA性能的设计及其优化 x1. 理论模型与实际性能的差异x2. DSA优化的极限(下界) 计算机与算法 计算机科学(computer science)的核心在于研究计算方法与过程的规律,而不仅仅是作为计算工具的计算机本身,因此E. Dijkstra及其追随者更倾向于将这门科学称作计算科学(computing science). 计算 = 信息处理

【OpenGL 学习笔记02】宽点画线

我们要知道,有三种绘图操作是最基本的:清除窗口,绘制几何图形,绘制光栅化对象. 光栅化对象后面再解释. 1.清除窗口 比如我们可以同时清除颜色缓冲区和深度缓冲区 glClearColor (0.0, 0.0, 0.0, 0.0);//指定颜色缓冲区清除为黑色 glClearDepth(1.0);//指定深度缓冲区的清除值为1.0 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//指定要清除的缓冲区并清除 2.绘制几何图形 先要设置绘制颜色,

SWIFT学习笔记02

1.//下面的这些浮点字面量都等于十进制的12.1875: let decimalDouble = 12.1875 let exponentDouble = 1.21875e1 let hexadecimalDouble = 0xC.3p0//==12+3*(1/16) 2.//类型别名,用typealias关键字来定义类型别名 typealias AudioSample = UInt16 var maxAmplitudeFound = AudioSample.min 3.//元组 let ht

Blender学习笔记 | 02 | 操作

Shift 点击不同图层 同时显示多图层物件 z 切换 Solid / Wireframe 视图模式 点选物件后M 移动到图层选项 Ctrl + 鼠标左键拖动 自由全选物件 B 方形区域圈选物件 Tab Object / Edit Mode 切换 T 开 / 关 侧栏 Ctrl + Tab 编辑状态下切换编辑对象 E Extrude Region 推挤区域.以发现为轴线. X 删除物件菜单 Blender学习笔记 | 02 | 操作,布布扣,bubuko.com

算法笔记-DTW动态时间规整

算法笔记-DTW动态时间规整 简介 简单的例子 定义 讨论 约束条件 步模式 标准化 点与点的距离函数 具体应用场景 分类 点到点匹配 算法笔记-DTW动态时间规整 动态时间规整/规划(Dynamic Time Warping, DTW)是一个比较老的算法,大概在1970年左右被提出来,最早用于处理语音方面识别分类的问题. 1.简介 简单来说,给定两个离散的序列(实际上不一定要与时间有关),DTW能够衡量这两个序列的相似程度,或者说两个序列的距离.同时DTW能够对两个序列的延展或者压缩能够有一定

小算法笔记

素数: 除 1 外只能被 1 和自身整除的数. 方法一: #include <stdio.h> #define N 1000 int num = 0; int prime(int n) { int i; if(n % 2 == 0) return (n == 2); if(n % 3 == 0) return (n == 3); if(n % 5 == 0) return (n == 5); for(i = 7; i*i <= n; ++i) if(n % i == 0) return

算法笔记之堆排序

一.对堆排序的相关了解 1.堆排序的运行时间是 O(nlogn) : 2.定义: 堆heap是一棵具有以下属性的二叉树-- (1)它是一棵完全二叉树: (2)每个结点大于或等于它的任意一个孩子. 备注:完全二叉树的定义--除了最后一层没填满以及最后一层的叶子都是偏左放置的,其他层都是满的二叉树! 3.二叉堆有两种:最大堆和最小堆.在堆排序中我们使用的是最大堆,最小堆常常在构造优先队列时使用. 4.一条路径的深度指的是这条路径的边数,一个结点的深度是指从根结点到该结点的路径的长度. 二.对堆进行排

《构建之法》阅读笔记02

<架构之美>阅读笔记02 今天,我读了<架构之美>第三.四章,第三章主要讲伸缩性架构设计,书中说设计系统架构时,要确保系统在伸缩时的弹性,根据书中的介绍我对系统伸缩性的理解是每个网站在不同时期都会有不同的访问量,有时会很多,有时会较少,当较多的人访问你的系统时,你可能需要数量较多的设备来满足用户与系统的交互,但当访问的用户越来越少时,系统伸缩性如果不够好,很多设备就会被浪费,不能够与系统分离,这对于软件开发者是不可取的.Darkstar项目就是由Sun公司实验室承担的一个将在架构的

算法笔记_023:拓扑排序(Java)

目录 1 问题描述 2 解决方案 2.1 基于减治法实现 2.2 基于深度优先查找实现 1 问题描述 给定一个有向图,求取此图的拓扑排序序列. 那么,何为拓扑排序? 定义:将有向图中的顶点以线性方式进行排序.即对于任何连接自顶点u到顶点v的有向边uv,在最后的排序结果中,顶点u总是在顶点v的前面. 2 解决方案 2.1 基于减治法实现 实现原理:不断地做这样一件事,在余下的有向图中求取一个源(source)(PS:定义入度为0的顶点为有向图的源),它是一个没有输入边的顶点,然后把它和所有从它出发

算法笔记_018:旅行商问题(Java)

目录 1 问题描述 2 解决方案 2.1 蛮力法   1 问题描述 何为旅行商问题?按照非专业的说法,这个问题要求找出一条n个给定的城市间的最短路径,使我们在回到触发的城市之前,对每个城市都只访问一次.这样该问题就可以表述为求一个图的最短哈密顿回路的问题.(哈密顿回路:定义为一个对图的每个顶点都只穿越一次的回路) 很容易看出来,哈密顿回路也可以定义为n+1个相邻顶点v1,v2,v3,...,vn,v1的一个序列.其中,序列的第一个顶点和最后一个顶点是相同的,而其它n-1个顶点都是互不相同的.并且