Deep learning Reading List

本文来自:http://jmozah.github.io/links/

Following is a growing list of some of the materials i found on the web for Deep Learning beginners.

Free Online Books

  1. Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Courville
  2. Neural Networks and Deep Learning by Michael Nielsen
  3. Deep Learning by Microsoft Research
  4. Deep Learning Tutorial by LISA lab, University of Montreal

Courses

  1. Machine Learning by Andrew Ng in Coursera
  2. Neural Networks for Machine Learning by Geoffrey Hinton in Coursera
  3. Neural networks class by Hugo Larochelle from Université de Sherbrooke
  4. Deep Learning Course by CILVR lab @ NYU
  5. CS231n: Convolutional Neural Networks for Visual Recognition On-Going
  6. CS224d: Deep Learning for Natural Language Processing Going to start

Video and Lectures

  1. How To Create A Mind By Ray Kurzweil - Is a inspiring talk
  2. Deep Learning, Self-Taught Learning and Unsupervised Feature Learning By Andrew Ng
  3. Recent Developments in Deep Learning By Geoff Hinton
  4. The Unreasonable Effectiveness of Deep Learning by Yann LeCun
  5. Deep Learning of Representations by Yoshua bengio
  6. Principles of Hierarchical Temporal Memory by Jeff Hawkins
  7. Machine Learning Discussion Group - Deep Learning w/ Stanford AI Lab by Adam Coates
  8. Making Sense of the World with Deep Learning By Adam Coates
  9. Demystifying Unsupervised Feature LearningBy Adam Coates
  10. Visual Perception with Deep Learning By Yann LeCun

Papers

  1. ImageNet Classification with Deep Convolutional Neural Networks
  2. Using Very Deep Autoencoders for Content Based Image Retrieval
  3. Learning Deep Architectures for AI
  4. CMU’s list of papers

Tutorials

  1. UFLDL Tutorial 1
  2. UFLDL Tutorial 2
  3. Deep Learning for NLP (without Magic)
  4. A Deep Learning Tutorial: From Perceptrons to Deep Networks

WebSites

  1. deeplearning.net
  2. deeplearning.stanford.edu

Datasets

  1. MNIST Handwritten digits
  2. Google House Numbers from street view
  3. CIFAR-10 and CIFAR-100
  4. IMAGENET
  5. Tiny Images 80 Million tiny images
  6. Flickr Data 100 Million Yahoo dataset
  7. Berkeley Segmentation Dataset 500

Frameworks

  1. Caffe
  2. Torch7
  3. Theano
  4. cuda-convnet
  5. Ccv
  6. NuPIC
  7. DeepLearning4J

Miscellaneous

  1. Google Plus - Deep Learning Community
  2. Caffe Webinar
  3. 100 Best Github Resources in Github for DL
  4. Word2Vec
  5. Caffe DockerFile
  6. TorontoDeepLEarning convnet
  7. Vision data sets
  8. Fantastic Torch Tutorial My personal favourite. Also check out gfx.js
  9. Torch7 Cheat sheet
时间: 2024-11-08 03:40:30

Deep learning Reading List的相关文章

深度学习阅读列表 Deep Learning Reading List

Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, In preparation. Review Papers Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville

My deep learning reading list

My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部都可以在google上找到.BTW:由于我对视觉尤其是检测识别比较感兴趣,所以关于DL的应用主要都是跟Vision相关的.在其他方面比如语音或者NLP,很少或者几乎没有.个人非常看好CNN和Sparse Autoencoder,这个list也反映了我的偏好,仅供参考. Review Book Lis

机器学习(Machine Learning)&深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本

机器学习(Machine Learning)&amp;深入学习(Deep Learning)资料

<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到

机器学习(Machine Learning)&amp;amp;深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L

Deep Learning 深度学习 学习教程网站集锦

http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在<科学>以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类: 2

A Full Hardware Guide to Deep Learning

A Full Hardware Guide to Deep Learning Deep Learning is very computationally intensive, so you will need a fast CPU with many cores, right? Or is it maybe wasteful to buy a fast CPU? One of the worst things you can do when building a deep learning sy

Machine and Deep Learning with Python

Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur

Applied Deep Learning Resources

Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings. Including trained models and simple methods that can be used out of the box. Mainly focusing on Convoluti