Python数据整合与数据准备-BigGorilla介绍

  一、前言

    “根据访谈记录和专家估计,数据科学家将50%至80%的时间花在搜集和准备难以梳理的数字数据的琐碎工作中,然后才能开发这些数据完成有用的工作”

                                — Steve Lohr, Aug 17, 2014, New York Times (For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights)

  二、BigGorilla介绍

      BigGorilla是一个开源数据整合和数据准备生态系统(由Python提供支持),以允许数据科学家执行数据整合和分析。BigGorilla整合和记录数据科学家将不同来源的数据融合到一个数据库以进行数据分析时通常采取的不同步骤。

    对于其中的每个步骤,我们记录现有的技术,并指出可以开发的所需技术。

    BigGorilla的各个组件可供免费下载和使用。我们鼓励数据科学家为BigGorilla贡献代码、数据集和示例。我们的目标还在于推进教育和培训,以通过BigGorilla提供的开发、文档和工具启示数据科学家。使用我们的BigGorilla教程立即开始数据整合与数据准备

    

      下面的虚构情境阐释如何使用BigGorilla的不同组件(参见页面底部)。假设一家公司尝试了解其客户和潜在客户对于公司产品以及对于竞争对手产品的想法。其目标在于,从相关的推特、博客和新闻文章中获取和准备数据,

    然后再对数据进行最喜好情感分析。下文描述了在执行情感分析算法之前为准备数据而采取的一种可能步骤。

    

    首先从不同来源(在本例中,从相关的推特、博客和新闻文章中)获取数据。一个获取步骤生成一个CSV文件,而另一个获取步骤生成一个JSON文件。然后使用两个抽取文件分别抽取以下信息:

    1、 JSON格式的推特(公司、项目、{sentence, tweetid, date}),其中句子、推特ID和日期按照公司和项目分组;

    2、 CSV格式的关于内容(公司名称、产品、情感表达、博客URL和日期)。之后,执行数据转换步骤,通过嵌套句子、推特ID和日期与公司名称和项目,将JSON文件转换为CSV文件。下一步就是匹配两个模式与用户设计的目标模式最终方案

      (公司、产品、言语、省份、日期)。模式映射组件使用由此得到的匹配生成一个脚本,该脚本会将两个源转换并组合为符合目标模式的数据。最后一步是数据匹配,其目标在于识别属于同一个公司和产品配对的所有言语。

      不同的步骤可以手动或者通过流程管理工具进行组合和协调

时间: 2024-10-28 14:21:41

Python数据整合与数据准备-BigGorilla介绍的相关文章

python 学习笔记 3 -- 数据结构篇上

数据结构是可以处理一些 数据 的 结构 .或者说,它们是用来存储一组相关数据的.在Python中有三种内建的数据结构--列表.元组和字典.本文主要对这三种数据类型以及相关的使用做介绍,以例子的形式演示更加容易理解! 1.列表(List) 列表是处理一组有序项目的数据结构,即你可以在一个列表中存储一个 序列 的项目.在Python中,你在每个项目之间用逗号分割. 列表中的项目应该包括在**方括号**中,这样Python就知道你是在指明一个列表.一旦你创建了一个列表,你可以添加.删除或是搜索列表中的

python 学习笔记 3 -- 数据结构篇下

5.引用 当你创建一个对象并给它赋一个变量的时候,这个变量仅仅 引用 那个对象,而不是表示这个对象本身!也就是说,变量名指向你计算机中存储那个对象的内存.这被称作名称到对象的绑定.eg. [python] view plaincopy # -*- coding: utf-8 -*- shoplist = ['apple', 'mango', 'carrot', 'banana'] print "we copy the shoplist to mylist directly \"with

胖子哥的大数据之路(13):破题,或从数据整合开始

一.前言 这是关于互联网上一篇文章的读后感,原文标题<大数据成变量,BAT入口生态或生变局>.读这篇文章既有醍醐灌顶之顿悟,亦有如履薄冰之恐惧,阿里好强,动作好快.其实,最近一直在思考当代企业信息化架构EA框架的调整,基本的一个思路是数据上提,与业务架构平齐,不再只是作为业务系统的功能支撑,而是自成一片天地,独立运营.至于数据化运营与现有业务的关系,则可一分为二:其一.可进,进可开疆辟土,基于数据衍生新的业务形态:其二.可退,退而求其次,辅助优化现有业务,从简单粗暴,到整合 营销.变现空间,天

Spark Streaming和Kafka整合保证数据零丢失

当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源和可靠的接收器: 2.应用程序的metadata被application的driver持久化了(checkpointed ); 3.启用了WAL特性(Write ahead log). 下面我将简单地介绍这些先决条件. 可靠的数据源和可靠的接收器 对于一些输入数据源(比如Kafka),Spark S

Python进阶(四十)-数据可视化の使用matplotlib进行绘图

Python进阶(四十)-数据可视化の使用matplotlib进行绘图 前言 ??matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.我将在这篇文章中介绍matplotlib API的核心对象,并介绍如何使用这些对象来实现绘图.实际上,matplotlib的对象体系严谨而有趣,为使用者提供了巨大的发挥空间.用户在熟悉了核心对象之后,可以轻易的定制图像.matplotlib的对象体系也是计算机图形学的一个优秀范例.即使你不是Python程序员,你也可以从文中

Python使用plotly绘制数据图表的方法

转载:http://www.jb51.net/article/118936.htm 本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧. 导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块

【Python】[07]定制数据对象

这章主要学习数据字典和类. 字典 python中字典的定义为:一个内置的数据结构(内置于python中),允许将数据与键而不是数字关联.这样可以使内存中的数据与实际数据的结构保持一致. 创建空字典的方式: 1.使用大括号来创建一个空字典,如:cleese={} 2.使用dic()工厂函数来创建空字典,如:cleese=dic() 通过将值与键关联,可以向空字典中增加数据,这两种方法向字典添加数据的区别是: 第一种创建方式可以分步向空字典中添加数据 cleese["Name"]=&quo

使用Python实现子区域数据分类统计

前言 将近两年前,我写过一篇同名文章(见使用Python实现子区域数据分类统计). 当时是为了统计县域内的植被覆盖量,折腾了一段时间,解决了这个问题.最近,又碰到了一个类似的需求,也需要统计某个小范围内的数据.简单来说,这个需求是将两个 shp 文件的任意两个对象做相交判断,最后形成一个新的空间对象集合,最后对此集合进行简单统计分析即可. 解决方案 明白了这一点之后,再看之前的代码,就发现当时用了很笨的方法.写了两个循环,先是取出大范围的 shp 中的每一个对象,再读取小范围 shp 的每一个对

python财经数据接口包Tushare pro的入门及简单使用方式(大数据,股票数据接口)

最近在做一个项目,需要用到股票的数据,我在网上查了很久,最终发现在股票数据上面还是tushare比较专业,而且对于将来做金融行业的大数据这一块的,tushare绝对是你的一个好帮手,所以下面我就简单介绍一下. 一.Tushare Pro简介 Tushare旧的版本运行了三年,在旧的版本运行了三年之后,Tushare Pro被发布,相对于之前的版本,它更加稳定质量更好,而且有了前三年的运行经验,Pro用起来更加流畅,而且将数据扩大到了股票.基金.期货.债券.外汇.行业大数据等区块链的数据,数据量更