Kafka跨集群迁移方案MirrorMaker原理、使用以及性能调优实践

序言
Kakfa MirrorMaker是Kafka 官方提供的跨数据中心的流数据同步方案。其实现原理,其实就是通过从Source Cluster消费消息然后将消息生产到Target Cluster,即普通的消息生产和消费。用户只要通过简单的consumer配置和producer配置,然后启动Mirror,就可以实现准实时的数据同步。

1. Kafka MirrorMaker基本特性
Kafka Mirror的基本特性有:

在Target Cluster没有对应的Topic的时候,Kafka MirrorMaker会自动为我们在Target Cluster上创建一个一模一样(Topic Name、分区数量、副本数量)一模一样的topic。如果Target Cluster存在相同的Topic则不进行创建,并且,MirrorMaker运行Source Cluster和Target Cluster的Topic的分区数量和副本数量不同。
同我们使用Kafka API创建KafkaConsumer一样,Kafka MirrorMaker允许我们指定多个Topic。比如,TopicA|TopicB|TopicC。在这里,|其实是正则匹配符,MirrorMaker也兼容使用逗号进行分隔。
多线程支持。MirrorMaker会在每一个线程上创建一个Consumer对象,如果性能允许,建议多创建一些线程
多进程任意横向扩展,前提是这些进程的consumerGroup相同。无论是多进程还是多线程,都是由Kafka ConsumerGroup的设计带来的任意横向扩展性,具体的分区分派,即具体的TopicPartition会分派给Group中的哪个Topic负责,是Kafka自动完成的,Consumer无需关心。
我们使用Kafka MirrorMaker完成远程的AWS(Source Cluster)上的Kafka信息同步到公司的计算集群(Target Cluster)。由于我们的大数据集群只有一个统一的出口IP,外网访问我们的内网服务器必须通过nginx转发,因此为了降低复杂度,决定使用“拉”模式而不是“推”模式,即,Kafka MirrorMaker部署在我们内网集群(Target Cluster),它负责从远程的Source Cluster(AWS)的Kafka 上拉取数据,然后生产到本地的Kafka。
Kafka MirrorMaker的官方文档一直没有更新,因此新版Kafka为MirrorMaker增加的一些参数、特性等在文档上往往找不到,需要看Kafka MirrorMaker的源码。Kafka MirrorMaker的主类位于kafka.tools.MirrorMaker,尤其是一些参数的解析逻辑和主要的执行流程,会比较有助于我们理解、调试和优化Kafka MirrorMaker。

这是我启动Kakfa MirrorMaker 的命令:

nohup ./bin/kafka-mirror-maker.sh --new.consumer --consumer.config config/mirror-consumer.properties --num.streams 40 --producer.config config/mirror-producer.properties --whitelist ‘ABTestMsg|AppColdStartMsg|BackPayMsg|WebMsg|GoldOpenMsg|BoCaiMsg‘ &

mirror-consumer.properties配置文件如下:

#新版consumer摈弃了对zookeeper的依赖,使用bootstrap.servers告诉consumer kafka server的位置
bootstrap.servers=ip-188-33-33-31.eu-central-1.compute.internal:9092,ip-188-33-33-32.eu-central-1.compute.internal:9092,ip-188-33-33-33.eu-central-1.compute.internal:9092

#如果使用旧版Consumer,则使用zookeeper.connect
#zookeeper.connect=ip-188-33-33-31.eu-central-1.compute.internal:2181,ip-188-33-33-32.eu-central-1.compute.internal:2181,ip-188-33-33-33.eu-central-1.compute.internal:2181
1.compute.internal:2181
#change the default 40000 to 50000
request.timeout.ms=50000

#hange default heartbeat interval from 3000 to 15000
heartbeat.interval.ms=30000

#change default session timeout from 30000 to 40000
session.timeout.ms=40000
#consumer group id
group.id=africaBetMirrorGroupTest
partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor
#restrict the max poll records from 2147483647 to 200000
max.poll.records=20000
#set receive buffer from default 64kB to 512kb
receive.buffer.bytes=524288

#set max amount of data per partition to override default 1048576
max.partition.fetch.bytes=5248576
#consumer timeout
#consumer.timeout.ms=5000

mirror-producer.properties的配置文件如下:

bootstrap.servers=10.120.241.146:9092,10.120.241.82:9092,10.120.241.110:9092

# name of the partitioner class for partitioning events; default partition spreads data randomly
#partitioner.class=

# specifies whether the messages are sent asynchronously (async) or synchronously (sync)
producer.type=sync

# specify the compression codec for all data generated: none, gzip, snappy, lz4.
# the old config values work as well: 0, 1, 2, 3 for none, gzip, snappy, lz4, respectively
compression.codec=none
# message encoder
serializer.class=kafka.serializer.DefaultEncoder

同时,我使用kafka-consumer-groups.sh循环监控消费延迟:

bin/kafka-consumer-groups.sh --bootstrap-server ip-188-33-33-31.eu-central-1.compute.internal:9092,ip-188-33-33-32.eu-central-1.compute.internal:9092,ip-188-33-33-33.eu-central-1.compute.internal:9092 --describe --group africaBetMirrorGroupTest --new-consumer

当我们使用new KafkaConsumer进行消息消费,要想通过kafka-consumer-groups.sh获取整个group的offset、lag延迟信息,也必须加上–new-consumer,告知kafka-consumer-groups.sh,这个group的消费者使用的是new kafka consumer,即group中所有consumer的信息保存在了Kafka上的一个名字叫做__consumer_offsets的特殊topic上,而不是保存在zookeeper上。我在使用kafka-consumer-groups.sh的时候就不知道还需要添加--new-consumer,结果我启动了MirrorMaker以后,感觉消息在消费,但是就是在zookeeper的/consumer/ids/上找不到group的任何信息。后来在stack overflow上问了别人才知道。

3. 负载不均衡原因诊断以及问题解决
在我的另外一篇博客《Kafka为Consumer分派分区:RangeAssignor和RoundRobinAssignor》中,介绍了Kafka内置的分区分派策略:RangeAssignor和RoundRobinAssignor。由于RangeAssignor是早期版本的Kafka的唯一的分区分派策略,因此,默认不配置的情况下,Kafka使用RangeAssignor进行分区分派,但是,在MirrorMaker的使用场景下,RoundRobinAssignor更有利于均匀的分区分派。甚至在KAFKA-3831中有人建议直接将MirrorMaker的默认分区分派策略改为RoundRobinAssignor。那么,它们到底有什么区别呢?我们先来看两种策略下的分区分派结果。在我的实验场景下,有6个topic:ABTestMsg|AppColdStartMsg|BackPayMsg|WebMsg|GoldOpenMsg|BoCaiMsg,每个topic有两个分区。由于MirrorMaker所在的服务器性能良好,我设置--num.streams 40,即单台MirrorMaker会用40个线程,创建40个独立的Consumer进行消息消费,两个MirrorMaker加起来80个线程,80个并行Consumer。由于总共只有6 * 2=12个TopicPartition,因此最多也只有12个Consumer会被分派到分区,其余Consumer空闲。
我们来看基于RangeAssignor分派策略,运行kafka-consumer-groups.sh观察到的分区分派的结果:

TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
ABTestMsg 0 780000 820038 49938 africaBetMirrorGroupTest-4-cf330e66-1319-4925-9605-46545df13453/114.113.198.126 africaBetMirrorGroupTest-0
ABTestMsg 1 774988 820038 55000 africaBetMirrorGroupTest-19-c77523e7-7b87-472b-9a26-cd902888944d/114.113.198.126 africaBetMirrorGroupTest-1
AppColdStartMsg 0 774000 820039 55938 africaBetMirrorGroupTest-19-674d8ad4-39d2-40cc-ae97-f4be9c1bb154/114.113.198.126 africaBetMirrorGroupTest-0
AppColdStartMsg 1 774100 820045 56038 africaBetMirrorGroupTest-15-91c67bf8-0c1c-42ac-97f0-5369794c2d1b/114.113.198.126 africaBetMirrorGroupTest-1
BackPayMsg 0 780000 820038 49938 africaBetMirrorGroupTest-4-cf330e66-1319-4925-9605-46545df13453/114.113.198.126 africaBetMirrorGroupTest-0
BackPayMsg 1 774988 820038 55000 africaBetMirrorGroupTest-19-c77523e7-7b87-472b-9a26-cd902888944d/114.113.198.126 africaBetMirrorGroupTest-1
WebMsg 0 774000 820039 55938 africaBetMirrorGroupTest-19-674d8ad4-39d2-40cc-ae97-f4be9c1bb154/114.113.198.126 africaBetMirrorGroupTest-0
WebMsg 1 774100 820045 56038 africaBetMirrorGroupTest-15-91c67bf8-0c1c-42ac-97f0-5369794c2d1b/114.113.198.126 africaBetMirrorGroupTest-1
GoldOpenMsg 0 780000 820038 49938 africaBetMirrorGroupTest-4-cf330e66-1319-4925-9605-46545df13453/114.113.198.126 africaBetMirrorGroupTest-0
GoldOpenMsg 1 774988 820038 55000 africaBetMirrorGroupTest-19-c77523e7-7b87-472b-9a26-cd902888944d/114.113.198.126 africaBetMirrorGroupTest-1
BoCaiMsg 0 774000 820039 55938 africaBetMirrorGroupTest-19-674d8ad4-39d2-40cc-ae97-f4be9c1bb154/114.113.198.126 africaBetMirrorGroupTest-0
BoCaiMsg 1 774100 820045 56038 africaBetMirrorGroupTest-15-91c67bf8-0c1c-42ac-97f0-5369794c2d1b/114.113.198.126 africaBetMirrorGroupTest-1
- - - - - africaBetMirrorGroupTest-6-ae373364-2ae2-42b8-8a74-683557e315bf/114.113.198.126 africaBetMirrorGroupTest-6
- - - - - africaBetMirrorGroupTest-9-0e346b46-1a2c-46a2-a2da-d977402f5c5d/114.113.198.126 africaBetMirrorGroupTest-9
- - - - - africaBetMirrorGroupTest-7-f0ae9f31-33e6-4ddd-beac-236fb7cf20d5/114.113.198.126 africaBetMirrorGroupTest-7
- - - - - africaBetMirrorGroupTest-7-e2a9e905-57c1-40a6-a7f3-4aefd4f1a30a/114.113.198.126 africaBetMirrorGroupTest-7
- - - - - africaBetMirrorGroupTest-8-480a2ef5-907c-48ed-be1f-33450903ec72/114.113.198.126 africaBetMirrorGroupTest-8
- - - - - africaBetMirrorGroupTest-8-4206bc08-58a5-488a-b756-672fb4eee6e0/114.113.198.126 africaBetMirrorGroupTest-8
.....后续更多空闲consumer省略不显示

当没有在mirror-consumer.properties 中配置分区分派策略,即使用默认的RangeAssignor的时候,我们发现,尽管我们每一个MirrorMaker有40个Consumer,整个Group中有80个Consumer,但是,一共6 * 2 = 12个TopicPartition竟然全部聚集在2-3个Consumer上,显然,这完全浪费了并行特性,被分配到一个consumer上的多个TopicPartition只能串行消费。

因此,通过partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor显式指定分区分派策略为RoundRobinAssignor,重启MirrorMaker,重新通过kafka-consumer-groups.sh 命令观察分区分派和消费延迟结果:

TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
ABTestMsg 0 819079 820038 959 africaBetMirrorGroupTest-4-cf330e66-1319-4925-9605-46545df13453/114.113.198.126 africaBetMirrorGroupTest-1
ABTestMsg 1 818373 820038 1665 africaBetMirrorGroupTest-19-c77523e7-7b87-472b-9a26-cd902888944d/114.113.198.126 africaBetMirrorGroupTest-5
AppColdStartMsg 0 818700 818907 1338 africaBetMirrorGroupTest-19-674d8ad4-39d2-40cc-ae97-f4be9c1bb154/114.113.198.126 africaBetMirrorGroupTest-20
AppColdStartMsg 1 818901 820045 1132 africaBetMirrorGroupTest-15-91c67bf8-0c1c-42ac-97f0-5369794c2d1b/114.113.198.126 africaBetMirrorGroupTest-18
BackPayMsg 0 819032 820038 959 africaBetMirrorGroupTest-4-cf330e66-1319-4925-9605-46545df13453/114.113.198.126 africaBetMirrorGroupTest-5
BackPayMsg 1 818343 820038 1638 africaBetMirrorGroupTest-19-c77523e7-7b87-472b-9a26-cd902888944d/114.113.198.126 africaBetMirrorGroupTest-8
WebMsg 0 818710 818907 1328 africaBetMirrorGroupTest-19-674d8ad4-39d2-40cc-ae97-f4be9c1bb154/114.113.198.126 africaBetMirrorGroupTest-7
WebMsg 1 818921 820045 1134 africaBetMirrorGroupTest-15-91c67bf8-0c1c-42ac-97f0-5369794c2d1b/114.113.198.126 africaBetMirrorGroupTest-9
GoldOpenMsg 0 819032 820038 959 africaBetMirrorGroupTest-4-cf330e66-1319-4925-9605-46545df13453/114.113.198.126 africaBetMirrorGroupTest-12
GoldOpenMsg 1 818343 820038 1638 africaBetMirrorGroupTest-19-c77523e7-7b87-472b-9a26-cd902888944d/114.113.198.126 africaBetMirrorGroupTest-14
BoCaiMsg 0 818710 818907 1322 africaBetMirrorGroupTest-19-674d8ad4-39d2-40cc-ae97-f4be9c1bb154/114.113.198.126 africaBetMirrorGroupTest-14
BoCaiMsg 1 818921 820045 1189 africaBetMirrorGroupTest-15-91c67bf8-0c1c-42ac-97f0-5369794c2d1b/114.113.198.126 africaBetMirrorGroupTest-117
- - - - - africaBetMirrorGroupTest-6-ae373364-2ae2-42b8-8a74-683557e315bf/114.113.198.126 africaBetMirrorGroupTest-6
- - - - - africaBetMirrorGroupTest-9-0e346b46-1a2c-46a2-a2da-d977402f5c5d/114.113.198.126 africaBetMirrorGroupTest-9
- - - - - africaBetMirrorGroupTest-7-f0ae9f31-33e6-4ddd-beac-236fb7cf20d5/114.113.198.126 africaBetMirrorGroupTest-7
- - - - - africaBetMirrorGroupTest-7-e2a9e905-57c1-40a6-a7f3-4aefd4f1a30a/114.113.198.126 africaBetMirrorGroupTest-7
- - - - - africaBetMirrorGroupTest-8-480a2ef5-907c-48ed-be1f-33450903ec72/114.113.198.126 africaBetMirrorGroupTest-8
- - - - - africaBetMirrorGroupTest-8-4206bc08-58a5-488a-b756-672fb4eee6e0/114.113.198.126 africaBetMirrorGroupTest-8
.....后续更多空闲consumer省略不显示

对比RangeAssingor,消息延迟明显减轻,而且,12个TopicPartition被均匀分配到了不同的consumer上,即单个Consumer只负责一个TopicPartition的消息消费,不同的TopicPartition之间实现了完全并行。
之所以出现以上不同,原因在于两个分区分派方式的策略不同:

RangeAssingor:先对所有Consumer进行排序,然后对Topic逐个进行分区分派。用以上Topic作为例子:
对所有的Consumer进行排序,排序后的结果为Consumer-0,Consumer-1,Consumer-2 ....Consumer-79
对ABTestMsg进行分区分派:
ABTestMsg-0分配给Consumer-0
ABTestMsg-1分配各Consumer-1

对AppColdStartMsg进行分区分派:
AppColdStartMsg-0分配各Consumer-0
AppColdStartMsg-1分配各Consumer-1

#后续TopicParition的分派以此类推

可见,RangeAssingor 会导致多个TopicPartition被分派在少量分区上面。
- RoundRobinAssignor:与RangeAssignor最大的区别,是不再逐个Topic进行分区分派,而是先将Group中的所有TopicPartition平铺展开,再一次性对他们进行一轮分区分派。

将Group中的所有TopicPartition展开,展开结果为:

ABTestMsg-0,ABTestMsg-1,AppColdStartMsg-0,AppColdStartMsg-1,BackPayMsg-0,BackPayMsg-1,WebMsg-0,WebMsg-1,GoldOpenMsg-0,GoldOpenMsg-1,BoCaiMsg-0,BoCaiMsg-1

对所有的Consumer进行排序,排序后的结果为Consumer-0,Consumer-1,Consumer-2 ,Consumer-79。

开始讲平铺的TopicPartition进行分区分派

ABTestMsg-0分配给Consumer-0
ABTestMsg-1分配给Consumer-1
AppColdStartMsg-0分配给Consumer-2
AppColdStartMsg-1分配给Consumer-3
BackPayMsg-0分配给Consumer-4
BackPayMsg-1分配给Consumer-5

#后续TopicParition的分派以此类推

由此可见,RoundRobinAssignor平铺式的分区分派算法是让我们的Kafka MirrorMaker能够无重叠地将TopicParition分派给Consumer的原因。

4. 本身网络带宽限制问题
网络带宽本身也会限制Kafka Mirror的吞吐量。进行压测的时候,我分别在我们的在线环境和测试环境分别运行Kafka MirrorMaker,均选择两台服务器运行MirrorMaker,但是在线环境是实体机环境,单台机器通过SCP方式拷贝Source Cluster上的大文件,平均吞吐量是600KB-1.5MB之间,但是测试环境的机器是同一个host主机上的多台虚拟机,SCP吞吐量是100KB以下。经过测试,测试环境消息积压会逐渐增多,在线环境持续积压,但是积压一直保持稳定。这种稳定积压是由于每次poll()的间隙新产生的消息量,属于正常现象。

5. 适当配置单次poll的消息总量和单次poll()的消息大小
通过Kafka MirrorMaker运行时指定的consumer配置文件(在我的环境中为$MIRROR_HOME/config/mirror-consumer.properties)来配置consumer。其中,通过以下配置,可以控制单次poll()的消息体量(数量和总体大小)
max.poll.records:单次poll()操作最多消费的消息总量,这里说的poll是单个consumer而言的。无论过大过小,都会发生问题:

如果设置得过小,则消息传输率降低,大量的头信息会占用较大的网络带宽;-
如果设置得过大,则会产生一个非常难以判断原因同时又会影响整个group中所有消息的消费的重要问题:rebalance。看过kafka代码的话可以看到,每次poll()请求都会顺带向远程server发送心跳信息,远程GroupCoordinator会根据这个心跳信息判断consumer的活性。如果超过指定时间(heartbeat.interval.ms)没有收到对应Consumer的心跳,则GroupCoordinator会判定这个Server已经挂掉,因此将这个Consumer负责的partition分派给其它Consumer,即触发rebalance。rebalance操作的影响范围是整个Group,即Group中所有的Consumer全部暂停消费直到Rebalance完成。而且,TopicPartition越长,这个过程会越长。其实,一个正常消费的环境,应该是任何时候都不应该发生rebalance的(一个新的Consumer的正常加入也会引起Rebalance,这种情况除外)。虽然Kafka本身是非常稳定的,但是还是应该尽量避免rebalance的发生。在某些极端情况下触发一些bug,rebalance可能永远停不下来了。。。如果单次max.poll.records消费太多消息,这些消息produce到Target Cluster的时间可能会较长,从而可能触发Rebalance。
6. 恶劣网络环境下增加超时时间配置
在不稳定的网络环境下,应该增加部分超时时间配置,如request.timeout.ms或者session.timeout.ms,一方面可以避免频繁的超时导致大量不必要的重试操作,同时,通过增加如上文所讲,通过增加heartbeat.interval.ms时间,可以避免不必要的rebalance操作。当然,在网络环境良好的情况下,上述配置可以适当减小以增加Kafka Server对MirrorMaker出现异常情况下的更加及时的响应。

总之,Kafka MirrorMaker作为跨数据中心的Kafka数据同步方案,绝对无法允许数据丢失以及数据的传输速度低于生产速度导致数据越积累越多。因此,唯有进行充分的压测和精准的性能调优,才能综合网络环境、服务器性能,将Kafka MirrorMaker的性能发挥到最大。

原文地址:https://www.cnblogs.com/felixzh/p/11508192.html

时间: 2024-10-16 10:46:11

Kafka跨集群迁移方案MirrorMaker原理、使用以及性能调优实践的相关文章

36套精品Java高级课,架构课,java8新特性,P2P金融项目,程序设计,功能设计,数据库设计,第三方支付,web安全,高并发,高性能,高可用,分布式,集群,电商,缓存,性能调优,设计模式,项目实战,大型分布式电商项目实战视频教程

新年伊始,学习要趁早,点滴记录,学习就是进步! QQ:1225462853 视频课程包含: 36套Java精品高级课架构课包含:java8新特性,P2P金融项目,程序设计,功能设计,数据库设计,架构设计,web安全,高并发,高性能,高可用,高可扩展,分布式,集群,电商,缓存,性能调优,设计模式,项目实战,工作流,程序调优,负载均衡,Solr集群与应用,主从复制,中间件,全文检索,Spring boot,Spring cloud,Dubbo,Elasticsearch,Redis,ActiveMQ

使用SCVMM跨集群迁移虚拟机失败(2904)

最近为客户部署了一个测试Hyper-V集群,其希望从原来的Hyper-V集群中将某些测试的虚拟机迁移到新部署的测试集群中,两个集群采用的Hyper-V版本均为Windows Server 2012.两个集群采用同一个SCVMM进行管理.   问题现象 在迁移某些虚拟机的时候,SCVMM提示了ID为2904的错误.错误详细信息为"VMM在XXX服务器上找不到指定的路径C:\ClusterStorage\Volume1\虚拟机名称\Virtual Hard Disks\.系统找不到指定的路径.(0x

hive跨集群迁移表

一.原集群操作: 1.hdfs创建目录hdfs dfs -mkdir /tmp/hive-export 2.hive导出表命令hive -e "use 库;show tables" | awk '{printf "use 库;export table %s to @/tmp/hive-export/%[email protected];\n",$1,$1}' | sed "s/@/'/g" > export.sql 3.报错return c

39套精品Java从入门到架构师|高并发|高性能|高可用|分布式|集群|电商缓存|性能调优|设计项目实战|视频教程

精品Java高级课,架构课,java8新特性,P2P金融项目,程序设计,功能设计,数据库设计,第三方支付,web安全,高并发,高性能,高可用,分布式,集群,电商,缓存,性能调优,设计模式,项目实战,大型分布式电商项目实战视频教程   视频课程包含: 39套Java精品高级课架构课包含:java8新特性,P2P金融项目,程序设计,功能设计,数据库设计,架构设计,web安全,高并发,高性能,高可用,高可扩展,分布式,集群,电商,缓存,性能调优,设计模式,项目实战,工作流,程序调优,负载均衡,Solr

Kafka 跨集群同步方案(转)

Kafka 跨集群同步方案——Kafka内置的MirrorMaker工具 该方案解决Kafka跨集群同步.创建Kafka集群镜像等相关问题,主要使用Kafka内置的MirrorMaker工具实现. Kafka镜像即已有Kafka集群的副本.下图展示如何使用MirrorMaker工具创建从源Kafka集群(source cluster)到目标Kafka集群(target cluster)的镜像.该工具通过Kafka consumer从源Kafka集群消费数据,然后通过一个内置的Kafka prod

Kafka 跨集群同步方案

该方案解决Kafka跨集群同步.创建Kafka集群镜像等相关问题,主要使用Kafka内置的MirrorMaker工具实现. Kafka镜像即已有Kafka集群的副本.下图展示如何使用MirrorMaker工具创建从源Kafka集群(source cluster)到目标Kafka集群(target cluster)的镜像.该工具通过Kafka consumer从源Kafka集群消费数据,然后通过一个内置的Kafka producer将数据重新推送到目标Kafka集群. 图片描述(最多50字) 一.

HDFS跨集群数据合并方案之ViewFileSystem

前言 在很多时候,我们会碰到数据融合的需求,比如说原先有A集群,B集群,后来管理员认为有2套集群,数据访问不方便,于是设法将A,B集群融合为一个更大的集群,将他们的数据都放在同一套集群上.一种办法就是用Hadoop自带的DistCp工具,将数据进行跨集群的拷贝.当然这会带来很多的问题,如果数据量非常庞大的话.本文给大家介绍另外一种解决方案,ViewFileSystem,姑且可以叫做视图文件系统.大意就是让不同集群间维持视图逻辑上的唯一性,不同集群间还是各管各的. 传统数据合并方案 为了形成对比,

分布式服务器集群架构方案思考

nginx-reverse-proxy-conf 研究了一套完整的分布式服务器集群架构方案. 0x01.大型网站演化 简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率. 集群主要分为:高可用集群(High Availability Cluster),负载均衡集群(Load Balance Cluster,nginx即可实现),科学计算集群(High Performance Computing Cluster). 分布式是指将不同的业务分布在

kafka基础集群部署

kafka集群部署方案 ZooKeeper第一步主机名称到IP地址映射配置ZooKeeper集群中具有两个关键的角色Leader和Follower.集群中所有的结点作为一个整体对分布式应用提供服务集群中每个结点之间都互相连接所以在配置的ZooKeeper集群的时候每一个结点的host到IP地址的映射都要配置上集群中其它结点的映射信息.例如我的ZooKeeper集群中每个结点的配置以zk-01为例/etc/hosts内容如下所示:192.168.0.11   zk-01192.168.0.12