U-Net图像语义分割实战:训练自己的数据集

U-Net是一种基于深度学习的图像语义分割方法,尤其在医学图像分割中表现优异。

本课程将手把手地教大家使用labelme图像标注工具制作自己的数据集,生成Mask图像,并使用U-Net训练自己的数据集,从而能开展自己的图像分割应用。

课程链接:https://edu.51cto.com/course/18936.html

本课程有三个项目实践:

(1) Kaggle盐体识别比赛 :利用U-Net进行Kaggle盐体识别

(2) Pothole语义分割:对汽车行驶场景中的路坑进行标注和语义分割

(3) Kaggle细胞核分割比赛 :利用U-Net进行Kaggle细胞核分割

本课程使用keras版本的U-Net,在Ubuntu系统上用Jupyter Notebook做项目演示。 包括:数据集标注、数据集格式转换和Mask图像生成、编写U-Net程序文件、训练自己的数据集、测试训练出的网络模型、性能评估。

本课程提供项目的数据集和Python程序文件。

课程示例1:使用U-Net进行Kaggle盐体识别

课程示例2:使用U-Net进行Pothole语义分割

课程示例3:使用U-Net进行Kaggle细胞核分割

原文地址:https://blog.51cto.com/14012985/2423688

时间: 2024-10-10 08:40:02

U-Net图像语义分割实战:训练自己的数据集的相关文章

DeepLabv3+图像语义分割实战:训练自己的数据集

DeepLabv3+是一种非常先进的基于深度学习的图像语义分割方法,可对物体进行像素级分割. 本课程将手把手地教大家使用labelme图像标注工具制造自己的数据集,并使用DeepLabv3+训练自己的数据集,从而能开展自己的图像分割应用. 课程链接:https://edu.51cto.com/course/18817.html 本课程有两个项目实践: (1) CamVid语义分割 :对CamVid数据集进行语义分割 (2) RoadScene语义分割:对汽车行驶场景中的路坑.车.车道线等进行物体

深度卷积网络CNN与图像语义分割

转载请注明出处: http://xiahouzuoxin.github.io/notes/ 级别1:DL快速上手 级别2:从Caffe着手实践 级别3:读paper,网络Train起来 级别3:Demo跑起来 读一些源码玩玩 熟悉Caffe接口,写Demo这是硬功夫 分析各层Layer输出特征 级别4:何不自己搭个CNN玩玩 级别5:加速吧,GPU编程 关于语义分割的一些其它工作 说好的要笔耕不缀,这开始一边实习一边找工作,还摊上了自己的一点私事困扰,这几个月的东西都没来得及总结一下.这就来记录

关于图像语义分割的总结和感悟

转自:http://www.2cto.com/kf/201609/545237.html 前言 (呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下.所以今天就把它总结成文章啦,方便大家一起讨论讨论.本文只是展示了一些比较经典和自己觉得比较不错的结构,毕竟这方面还是有挺多的结构方法了. 介绍 图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类 从图像上来看,就是我们需要将实际的场景图分割成下面的分割图: 不同颜色代表不同类别. 经过我阅读“大量”论

从特斯拉到计算机视觉之「图像语义分割」

作者:魏秀参链接:https://zhuanlan.zhihu.com/p/21824299来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 说起特斯拉,大家可能立马会想到今年5月份发生在特斯拉Model S自动驾驶上的一宗夺命车祸.初步的调查表明,在强烈的日照条件下,驾驶员和自动驾驶系统都未能注意到牵引式挂车的白色车身,因此未能及时启动刹车系统.而由于牵引式挂车正在横穿公路,且车身较高,这一特殊情况导致Model S从挂车底部通过时,其前挡风玻璃与挂车底部发生撞击

图像语义分割之FCN和CRF

http://blog.csdn.net/u012759136/article/details/52434826 前言 (呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下.所以今天就把它总结成文章啦,方便大家一起讨论讨论.本文只是展示了一些比较经典和自己觉得比较不错的结构,毕竟这方面还是有挺多的结构方法了. 介绍 图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类 从图像上来看,就是我们需要将实际的场景图分割成下面的分割图:  不同颜色代表不同类

图像语义分割的前世今生

  1998年以来,人工神经网络识别技术已经引起了广泛的关注,并且应用于图像分割.基于神经网络的分割方法的基本思想是通过训练多层感知机来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的.这种方法需要大量的训练数据.神经网络存在巨量的连接,容易引入空间信息,能较好地解决图像中的噪声和不均匀问题.选择何种网络结构是这种方法要解决的主要问题. 图像分割是图像识别和计算机视觉至关重要的预处理.没有正确的分割就不可能有正确的识别. 这里先说一下图像语义分割和普通的图像分割的关系: 普通的图像

图像语义分割技术

引用自:https://www.leiphone.com/news/201705/YbRHBVIjhqVBP0X5.html 大多数人接触 "语义" 都是在和文字相关的领域,或语音识别,期望机器能够识别你发出去的消息或简短的语音,然后给予你适当的反馈和回复.嗯,看到这里你应该已经猜到了,图像领域也是存在 "语义" 的. 今天是 AI 大热年,很多人都关注与机器人的语音交互,可是有没有想过,将来的机器人如果不能通过图像来识别主人,家里的物品.宠物,那该多没意思.说近一

基于深度学习的图像语义分割方法综述

近年来,深度学习技术已经广泛应用到图像语义分割领域.主要对基于深度学习的图像语义分割的经典方法与研究现状进行分类.梳理和总结.根据分割特点和处理粒度的不同,将基于深度学习的图像语义分割方法分为基于区域分类的图像语义分割方法和基于像素分类的图像语义分割方法.把基于像素分类的图像语义分割方法进一步细分为全监督学习图像语义分割方法和弱监督学习图像语义分割方法.对每类方法的代表性算法进行了分析介绍,并详细总结了每类方法的基本思想和优缺点,系统地阐述了深度学习对图像语义分割领域的贡献.对图像语义分割相关实

基于深度学习的图像语义分割技术概述之背景与深度网络架构

图像语义分割正在逐渐成为计算机视觉及机器学习研究人员的研究热点.大量应用需要精确.高效的分割机制,如:自动驾驶.室内导航.及虚拟/增强现实系统.这种需求与机器视觉方面的深度学习领域的目标一致,包括语义分割或场景理解.本文对多种应用领域语义分割的深度学习方法进行概述.首先,我们给出本领域的术语及主要背景知识.其次,介绍主要的数据集及难点,以帮助研究人员找到合适的数据集和研究目标.之后,概述现有方法,及其贡献.最后,给出提及方法的量化标准及其基于的数据集,接着是对于结果的讨论.最终,对于基于深度学习