已知二叉树的先序遍历和中序遍历序列,输出后序遍历序列

参考:http://blog.csdn.net/u010607031/article/details/37578957

//#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
const int N = 26;
char s1[N], s2[N], ans[N];//s1[N],s2[N]分别为先序和中序遍历序列
void build(int n, char* s1, char* s2, char* s)
{
if (n <= 0) return;
int p = strchr(s2, s1[0]) - s2;//找到根结点的位置 char *strchr(const char *s,char c),可以查找字符串s中首次出现字符c的位置
build(p, s1 + 1, s2, s);//递归构造左子树的后序遍历
build(n - p - 1, s1 + p + 1, s2 + p + 1, s + p);//递归构造右子树的后序遍历
s[n - 1] = s1[0];//把根结点添加到最后
}
int main()
{
while (cin>>s1>>s2)
{
int n = strlen(s1);
build(n, s1, s2, ans);
ans[n] = ‘\0‘;
cout<<ans<<endl;
//return 0; //多了这句无法有多组输入
}
}

将上述代码变形就可以得到:已知中序和后序遍历序列求前序遍历序列的代码:

#include<iostream>
#include<string.h>
using namespace std;

const int N = 26;
char s1[N], s2[N], ans[N]; //s1[N],s2[N]分别为中序和后序遍历序列

void build(int n, char*s1, char*s2, char*ans)
{
if (n <= 0) return;
int p =strchr(s1, s2[n - 1])-s1; //找根结点在s1中的位置
ans[0] = s2[n - 1]; //把根结点添加到最前面
build(p, s1, s2, ans + 1); //递归构造左子树的先序遍历
build(n - p - 1, s1 + p + 1, s2 + p, ans+p+1); //递归构造右子树的先序遍历

}

int main()
{
while (cin >> s1 >> s2)
{
int n = strlen(s1);
build(n, s1, s2, ans);
ans[n] = ‘\0‘;
cout << ans << endl;

}
}

时间: 2024-11-03 04:13:41

已知二叉树的先序遍历和中序遍历序列,输出后序遍历序列的相关文章

算法进化历程之“根据二叉树的先序和中序序列输出后序序列”

巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 前不久在看到一个作业"根据二叉树的先序和中序序列输出后序序列",当时我参考<数据结构与算法(C语言)习题集>上的做法,先根据先中序序列确定一颗二叉树,然后后序遍历二叉树输出后序序列. 函数采用了递归算法,利用函数传入的先序和中序序列的左右边界,确定要处理的序列段,生成相应的二叉树. 基本思路是,把该段先序序列的第一个元素作为当前二叉树的根结点,然后在中序序列找到根结点.根结点

已知二叉树的前序遍历结果和中序遍历结果,请重建原来的二叉树

分析的过程: 1.假设前序遍历的第一个值为a,该值就是原二叉树的根节点. 2.在中序遍历结果中查找a. 则在中序遍历中a前面的节点,就是原二叉树a节点左子树的中序遍历结果:在a后面的节点,就是原二叉树a节点右子树的中序遍历结果. 3.由第二步得到a节点左子树的节点个数为m,那么在前序遍历中a后面的m个节点即为a节点左子树的前序遍历结果: 4.由第二步得到a节点右子树的节点个数为n,那么在前序遍历中最后n个节点即为a节点右子树的前序遍历结果: 由此我们可以得到a节点左子树和右子树的前序遍历和中序遍

二叉树系列(二):已知中序遍历序列和后序遍历序列,求先序遍历序列

前面已经介绍过三种遍历方法的规则,为了大家看着方便,这里我们在重新介绍一遍: 1.先序遍历 (1)访问根结点: (2)先序遍历左子树: (3)先序遍历右子树.  2.中序遍历 (1)中序遍历左子树: (2)访问根结点: (3)中序遍历右子树. 3.后序遍历 (1)后序遍历左子树: (2)后序遍历右子树: (3)访问根结点. 知道了二叉树的三种遍历规则,只要有中序遍历序列和前后任一种遍历序列,我们就可以求出第三种遍历序列,今天我们研究的是已知中序和后序遍历序列,求先序遍历序列. 已知该二叉树的中序

已知二叉树的前序遍历和中序遍历,如何得到它的后序遍历?

对一棵二叉树进行遍历,我们可以采取3中顺序进行遍历,分别是前序遍历.中序遍历和后序遍历.这三种方式是以访问父节点的顺序来进行命名的.假设父节点是N,左节点是L,右节点是R,那么对应的访问遍历顺序如下: 前序遍历    N->L->R 中序遍历    L->N->R 后序遍历    L->R->N /***************************************************************************************

已知二叉树的先序遍历序列和中序遍历序列,输出该二叉树的后序遍历序列

题目描述 输入二叉树的先序遍历序列和中序遍历序列,输出该二叉树的后序遍历序列. 输入 第一行输入二叉树的先序遍历序列: 第二行输入二叉树的中序遍历序列. 输出 输出该二叉树的后序遍历序列. 示例输入 ABDCEF BDAECF 示例输出 DBEFCA #include <iostream> #include <cstring> #define MAX 50+3 using namespace std; typedef char Elem_Type; typedef struct B

已知二叉树的先序,中序遍历,求后续遍历

//已知二叉树的先序,中序遍历,求后续遍历 struct TreeNode { char elem; struct TreeNode* left; struct TreeNode* right; }; TreeNode* BinaryTree(char* inorder,char* preorder,int length) { if(length == 0) return NULL; TreeNode* node = new TreeNode; node->elem = *preorder; i

已知二叉树的中序遍历和先序/后序遍历求后序/先序

已知两种遍历序列求原始二叉树 算法思想: 需要明确的前提条件 通过先序和中序可以求出原始二叉树 通过中序和后序可以求出原始二叉树 但是通过先序和后序无法还原出二叉树 换种说法: 只有通过先序中序或者后序中序才可以确定一个二叉树 先来看一个例子,已知先序遍历序列和中序遍历序列求后序遍历: 先序:ABCDEFGH 中序:BDCEAFHG 求后序: 分析:要求后序遍历序列,必须求出原始二叉树 先看先序序列A第一个出现,有先序遍历的定义可以知道A是根结点 再看中序遍历,A的左边是BDCE,而A的右边是F

经典白话算法之二叉树中序前序序列(或后序)求解树

这种题一般有二种形式,共同点是都已知中序序列.如果没有中序序列,是无法唯一确定一棵树的. <1>已知二叉树的前序序列和中序序列,求解树. 1.确定树的根节点.树根是当前树中所有元素在前序遍历中最先出现的元素. 2.求解树的子树.找出根节点在中序遍历中的位置,根左边的所有元素就是左子树,根右边的所有元素就是右子树.若根节点左边或右边为空,则该方向子树为空:若根节点 边和右边都为空,则根节点已经为叶子节点. 3.递归求解树.将左子树和右子树分别看成一棵二叉树,重复1.2.3步,直到所有的节点完成定

先序序列和后序序列并不能唯一确定二叉树

数据结构的基础知识中重要的一点就是能否根据两种不同遍历序列的组合(有三种:先序+中序,先序+后序,中序+后序),唯一的确定一棵二叉树.然后就是根据二叉树的不同遍历序列(先序.中序.后序),重构二叉树.显然,这三种组合并不是都能唯一确定二叉树的,其中先序+后序就不能唯一确定一棵二叉树,其他两种组合可以唯一的确定一颗二叉树. 由先序序列和后序序列不能唯一确定一棵二叉树,因无法确定左右子树两部分. 反例:任何结点只有左子树的二叉树和任何结点只有右子树的二叉树,其前序序列相同,后序序列相同,但却是两棵不

通过二叉树的中序序列和后序序列获取前序序列

二叉树的遍历方式常见的三种是:先序遍历(ABC).中序遍历(BAC).后序遍历(BCA) 先序遍历: 若二叉树为空,则空操作:否则: 访问根结点; 先序遍历左子树: 先序遍历右子树. 中序遍历: 若二叉树为空,则空操作:否则: 中序遍历左子树: 访问根结点: 中序遍历右子树. 后序遍历: 若二叉树为空,则空操作:否则: 后序遍历左子树: 后序遍历右子树: 访问根结点. 在学习到 根据遍历序列确定二叉树 时,知道了:可以通过二叉树的先中或者中后遍历序列唯一确定一棵二叉树. 根据算法描述 使用jav