tensorflow 1.0 学习:模型的保存与恢复(Saver)

将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。

模型保存,先要创建一个Saver对象:如

saver=tf.train.Saver()

在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:

saver=tf.train.Saver(max_to_keep=0)

但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐。

当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

saver=tf.train.Saver(max_to_keep=1)

创建完saver对象后,就可以保存训练好的模型了,如:

saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=step)

第一个参数sess,这个就不用说了。第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中。

saver.save(sess, ‘my-model‘, global_step=0) ==>      filename: ‘my-model-0‘
...
saver.save(sess, ‘my-model‘, global_step=1000) ==> filename: ‘my-model-1000‘

看一个mnist实例:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun  4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x,
                      units=1024,
                      activation=tf.nn.relu,
                      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1,
                      units=512,
                      activation=tf.nn.relu,
                      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2,
                        units=10,
                        activation=None,
                        kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                        kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

saver=tf.train.Saver(max_to_keep=1)
for i in range(100):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc))
  saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1)
sess.close()

代码中红色部分就是保存模型的代码,虽然我在每训练完一代的时候,都进行了保存,但后一次保存的模型会覆盖前一次的,最终只会保存最后一次。因此我们可以节省时间,将保存代码放到循环之外(仅适用max_to_keep=1,否则还是需要放在循环内).

在实验中,最后一代可能并不是验证精度最高的一代,因此我们并不想默认保存最后一代,而是想保存验证精度最高的一代,则加个中间变量和判断语句就可以了。

saver=tf.train.Saver(max_to_keep=1)
max_acc=0
for i in range(100):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc))
  if val_acc>max_acc:
      max_acc=val_acc
      saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1)
sess.close()

如果我们想保存验证精度最高的三代,且把每次的验证精度也随之保存下来,则我们可以生成一个txt文件用于保存。

saver=tf.train.Saver(max_to_keep=3)
max_acc=0
f=open(‘ckpt/acc.txt‘,‘w‘)
for i in range(100):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc))
  f.write(str(i+1)+‘, val_acc: ‘+str(val_acc)+‘\n‘)
  if val_acc>max_acc:
      max_acc=val_acc
      saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1)
f.close()
sess.close()

模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径。我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。如:

model_file=tf.train.latest_checkpoint(‘ckpt/‘)
saver.restore(sess,model_file)

则程序后半段代码我们可以改为:

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

is_train=False
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
    max_acc=0
    f=open(‘ckpt/acc.txt‘,‘w‘)
    for i in range(100):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
      val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
      print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc))
      f.write(str(i+1)+‘, val_acc: ‘+str(val_acc)+‘\n‘)
      if val_acc>max_acc:
          max_acc=val_acc
          saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1)
    f.close()

#验证阶段
else:
    model_file=tf.train.latest_checkpoint(‘ckpt/‘)
    saver.restore(sess,model_file)
    val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
    print(‘val_loss:%f, val_acc:%f‘%(val_loss,val_acc))
sess.close()

标红的地方,就是与保存、恢复模型相关的代码。用一个bool型变量is_train来控制训练和验证两个阶段。

整个源程序:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun  4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x,
                      units=1024,
                      activation=tf.nn.relu,
                      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1,
                      units=512,
                      activation=tf.nn.relu,
                      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2,
                        units=10,
                        activation=None,
                        kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                        kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

is_train=True
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
    max_acc=0
    f=open(‘ckpt/acc.txt‘,‘w‘)
    for i in range(100):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
      val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
      print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc))
      f.write(str(i+1)+‘, val_acc: ‘+str(val_acc)+‘\n‘)
      if val_acc>max_acc:
          max_acc=val_acc
          saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1)
    f.close()

#验证阶段
else:
    model_file=tf.train.latest_checkpoint(‘ckpt/‘)
    saver.restore(sess,model_file)
    val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
    print(‘val_loss:%f, val_acc:%f‘%(val_loss,val_acc))
sess.close()

参考文章:http://blog.csdn.net/u011500062/article/details/51728830

时间: 2024-10-01 07:50:21

tensorflow 1.0 学习:模型的保存与恢复(Saver)的相关文章

tensorflow 1.0 学习:用CNN进行图像分类

tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1.0 数据:http://download.tensorflow.org/example_images/flower_photos.tgz 花总共有五类,分别放在5个文件夹下. 闲话不多说,直接上代码,希望大家能看懂:) # -*- coding: utf-8 -*- from skimage im

tensorflow 1.0 学习:用别人训练好的模型来进行图像分类

谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类. 下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip 下载完解压后,得到几个文件: 其中的classify_image_graph_def.pb 文件就是训练好的Inception-v3模型. imagenet_synset_to_human_label

Tensorflow Learning1 模型的保存和恢复

CKPT->pb Demo 解析 tensor name 和 node name 的区别 Pb 的恢复 CKPT->pb tensorflow的模型保存有两种形式: 1. ckpt:可以恢复图和变量,继续做训练 2. pb : 将图序列化,变量成为固定的值,,只可以做inference:不能继续训练 Demo 1 def freeze_graph(input_checkpoint,output_graph): 2 3 ''' 4 :param input_checkpoint: 5 :para

tensorflow模型的保存与恢复

模型保存后产生四个文件,分别是: |--models| |--checkpoint| |--.meta| |--.data| |--.index .meta保存的是图的结构 checkpoint文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表. .data和.index保存的是变量值. tensorflow常用的模型保存方法: best_str = '' if best_loss is None or valid_loss < best_los

tensorflow 2.0 学习 (七) 反向传播代码逐步实现

数据集为: 代码为: 1 # encoding: utf-8 2 3 import tensorflow as tf 4 import numpy as np 5 import seaborn as sns 6 import matplotlib.pyplot as plt 7 from sklearn.datasets import make_moons 8 # from sklearn.datasets import make_circles 9 from sklearn.model_sel

tensorflow 2.0 学习 (九) tensorboard可视化功能认识

代码如下: # encoding :utf-8 import io # 文件数据流 import datetime import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras # 导入常见网络层, sequential容器, 优化器, 损失函数 from tensorflow.keras import layers, Sequential, optimizers, losses, met

tensorflow 2.0 学习 (十一)卷积神经网络 (一)MNIST数据集训练与预测 LeNet-5网络

网络结构如下: 代码如下: 1 # encoding: utf-8 2 3 import tensorflow as tf 4 from tensorflow import keras 5 from tensorflow.keras import layers, Sequential, losses, optimizers, datasets 6 import matplotlib.pyplot as plt 7 8 Epoch = 30 9 path = r'G:\2019\python\mn

tensorflow 1.0 学习:参数初始化(initializer)

CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法

tensorflow 2.0 学习 (六) Himmelblua函数求极值

Himmelblua函数在(-6,6),(-6,6)的二维平面上求极值 函数的数学表达式:f(x, y) = (x**2 + y -11)**2 + (x + y**2 -7)**2: 如下图所示 等高线如下图所示: 代码如下: # encoding: utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits