Python多进程编程(转)

原文:http://www.cnblogs.com/kaituorensheng/p/4445418.html

阅读目录

序. multiprocessing
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

回到顶部

1. Process

创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

例1.1:创建函数并将其作为单个进程

import multiprocessing
import time

def worker(interval):
    n = 5
    while n > 0:
        print("The time is {0}".format(time.ctime()))
        time.sleep(interval)
        n -= 1

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.start()
    print "p.pid:", p.pid
    print "p.name:", p.name
    print "p.is_alive:", p.is_alive()

结果


1

2

3

4

5

6

7

8

p.pid: 8736

p.name: Process-1

p.is_alive: True

The time is Tue Apr 21 20:55:12 2015

The time is Tue Apr 21 20:55:15 2015

The time is Tue Apr 21 20:55:18 2015

The time is Tue Apr 21 20:55:21 2015

The time is Tue Apr 21 20:55:24 2015

例1.2:创建函数并将其作为多个进程

import multiprocessing
import time

def worker_1(interval):
    print "worker_1"
    time.sleep(interval)
    print "end worker_1"

def worker_2(interval):
    print "worker_2"
    time.sleep(interval)
    print "end worker_2"

def worker_3(interval):
    print "worker_3"
    time.sleep(interval)
    print "end worker_3"

if __name__ == "__main__":
    p1 = multiprocessing.Process(target = worker_1, args = (2,))
    p2 = multiprocessing.Process(target = worker_2, args = (3,))
    p3 = multiprocessing.Process(target = worker_3, args = (4,))

    p1.start()
    p2.start()
    p3.start()

    print("The number of CPU is:" + str(multiprocessing.cpu_count()))
    for p in multiprocessing.active_children():
        print("child   p.name:" + p.name + "\tp.id" + str(p.pid))
    print "END!!!!!!!!!!!!!!!!!"

结果


1

2

3

4

5

6

7

8

9

10

11

The number of CPU is:4

child   p.name:Process-3    p.id7992

child   p.name:Process-2    p.id4204

child   p.name:Process-1    p.id6380

END!!!!!!!!!!!!!!!!!

worker_1

worker_3

worker_2

end worker_1

end worker_2

end worker_3

例1.3:将进程定义为类

import multiprocessing
import time

class ClockProcess(multiprocessing.Process):
    def __init__(self, interval):
        multiprocessing.Process.__init__(self)
        self.interval = interval

    def run(self):
        n = 5
        while n > 0:
            print("the time is {0}".format(time.ctime()))
            time.sleep(self.interval)
            n -= 1

if __name__ == ‘__main__‘:
    p = ClockProcess(3)
    p.start()      

:进程p调用start()时,自动调用run()

结果


1

2

3

4

5

the time is Tue Apr 21 20:31:30 2015

the time is Tue Apr 21 20:31:33 2015

the time is Tue Apr 21 20:31:36 2015

the time is Tue Apr 21 20:31:39 2015

the time is Tue Apr 21 20:31:42 2015

例1.4:daemon程序对比结果

#1.4-1 不加daemon属性

import multiprocessing
import time

def worker(interval):
    print("work start:{0}".format(time.ctime()));
    time.sleep(interval)
    print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.start()
    print "end!"

结果


1

2

3

end!

work start:Tue Apr 21 21:29:10 2015

work end:Tue Apr 21 21:29:13 2015

#1.4-2 加上daemon属性

import multiprocessing
import time

def worker(interval):
    print("work start:{0}".format(time.ctime()));
    time.sleep(interval)
    print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.daemon = True
    p.start()
    print "end!"

结果


1

end!

:因子进程设置了daemon属性,主进程结束,它们就随着结束了。

#1.4-3 设置daemon执行完结束的方法

import multiprocessing
import time

def worker(interval):
    print("work start:{0}".format(time.ctime()));
    time.sleep(interval)
    print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.daemon = True
    p.start()
    p.join()
    print "end!"

结果


1

2

3

work start:Tue Apr 21 22:16:32 2015

work end:Tue Apr 21 22:16:35 2015

end!

回到顶部

2. Lock

当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

import multiprocessing
import sys

def worker_with(lock, f):
    with lock:
        fs = open(f, ‘a+‘)
        n = 10
        while n > 1:
            fs.write("Lockd acquired via with\n")
            n -= 1
        fs.close()

def worker_no_with(lock, f):
    lock.acquire()
    try:
        fs = open(f, ‘a+‘)
        n = 10
        while n > 1:
            fs.write("Lock acquired directly\n")
            n -= 1
        fs.close()
    finally:
        lock.release()

if __name__ == "__main__":
    lock = multiprocessing.Lock()
    f = "file.txt"
    w = multiprocessing.Process(target = worker_with, args=(lock, f))
    nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
    w.start()
    nw.start()
    print "end"

结果(输出文件)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lockd acquired via with

Lock acquired directly

Lock acquired directly

Lock acquired directly

Lock acquired directly

Lock acquired directly

Lock acquired directly

Lock acquired directly

Lock acquired directly

Lock acquired directly

回到顶部

3. Semaphore

Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

import multiprocessing
import time

def worker(s, i):
    s.acquire()
    print(multiprocessing.current_process().name + "acquire");
    time.sleep(i)
    print(multiprocessing.current_process().name + "release\n");
    s.release()

if __name__ == "__main__":
    s = multiprocessing.Semaphore(2)
    for i in range(5):
        p = multiprocessing.Process(target = worker, args=(s, i*2))
        p.start()

结果


1

2

3

4

5

6

7

8

9

10

11

12

13

14

Process-1acquire

Process-1release

Process-2acquire

Process-3acquire

Process-2release

Process-5acquire

Process-3release

Process-4acquire

Process-5release

Process-4release

回到顶部

4. Event

Event用来实现进程间同步通信。

import multiprocessing
import time

def wait_for_event(e):
    print("wait_for_event: starting")
    e.wait()
    print("wairt_for_event: e.is_set()->" + str(e.is_set()))

def wait_for_event_timeout(e, t):
    print("wait_for_event_timeout:starting")
    e.wait(t)
    print("wait_for_event_timeout:e.is_set->" + str(e.is_set()))

if __name__ == "__main__":
    e = multiprocessing.Event()
    w1 = multiprocessing.Process(name = "block",
            target = wait_for_event,
            args = (e,))

    w2 = multiprocessing.Process(name = "non-block",
            target = wait_for_event_timeout,
            args = (e, 2))
    w1.start()
    w2.start()

    time.sleep(3)

    e.set()
    print("main: event is set")

结果


1

2

3

4

5

wait_for_event: starting

wait_for_event_timeout:starting

wait_for_event_timeout:e.is_set->False

main: event is set

wairt_for_event: e.is_set()->True

回到顶部

5. Queue

Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。

get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:

import multiprocessing

def writer_proc(q):
    try:
        q.put(1, block = False)
    except:
        pass   

def reader_proc(q):
    try:
        print q.get(block = False)
    except:
        pass

if __name__ == "__main__":
    q = multiprocessing.Queue()
    writer = multiprocessing.Process(target=writer_proc, args=(q,))
    writer.start()   

    reader = multiprocessing.Process(target=reader_proc, args=(q,))
    reader.start()  

    reader.join()
    writer.join()

结果


1

1

回到顶部

6. Pipe

Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。

send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

import multiprocessing
import time

def proc1(pipe):
    while True:
        for i in xrange(10000):
            print "send: %s" %(i)
            pipe.send(i)
            time.sleep(1)

def proc2(pipe):
    while True:
        print "proc2 rev:", pipe.recv()
        time.sleep(1)

def proc3(pipe):
    while True:
        print "PROC3 rev:", pipe.recv()
        time.sleep(1)

if __name__ == "__main__":
    pipe = multiprocessing.Pipe()
    p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
    p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
    #p3 = multiprocessing.Process(target=proc3, args=(pipe[1],))

    p1.start()
    p2.start()
    #p3.start()

    p1.join()
    p2.join()
    #p3.join()

结果

回到顶部

7. Pool

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

例7.1:使用进程池

#coding: utf-8
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print "Sub-process(es) done."

一次执行结果


1

2

3

4

5

6

7

8

9

10

mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0

msg: hello 1

msg: hello 2

end

msg: hello 3

end

end

end

Sub-process(es) done.

函数解释:

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例7.2:使用进程池(阻塞)

#coding: utf-8
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = "hello %d" %(i)
        pool.apply(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print "Sub-process(es) done."

一次执行的结果


1

2

3

4

5

6

7

8

9

10

msg: hello 0

end

msg: hello 1

end

msg: hello 2

end

msg: hello 3

end

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~

Sub-process(es) done.

  

例7.3:使用进程池,并关注结果

import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"
    return "done" + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(3):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print ":::", res.get()
    print "Sub-process(es) done."

一次执行结果


1

2

3

4

5

6

7

8

9

10

msg: hello 0

msg: hello 1

msg: hello 2

end

end

end

::: donehello 0

::: donehello 1

::: donehello 2

Sub-process(es) done.

例7.4:使用多个进程池

#coding: utf-8
import multiprocessing
import os, time, random

def Lee():
    print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
    start = time.time()
    time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
    end = time.time()
    print ‘Task Lee, runs %0.2f seconds.‘ %(end - start)

def Marlon():
    print "\nRun task Marlon-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 40)
    end=time.time()
    print ‘Task Marlon runs %0.2f seconds.‘ %(end - start)

def Allen():
    print "\nRun task Allen-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 30)
    end = time.time()
    print ‘Task Allen runs %0.2f seconds.‘ %(end - start)

def Frank():
    print "\nRun task Frank-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 20)
    end = time.time()
    print ‘Task Frank runs %0.2f seconds.‘ %(end - start)

if __name__==‘__main__‘:
    function_list=  [Lee, Marlon, Allen, Frank]
    print "parent process %s" %(os.getpid())

    pool=multiprocessing.Pool(4)
    for func in function_list:
        pool.apply_async(func)     #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中

    print ‘Waiting for all subprocesses done...‘
    pool.close()
    pool.join()    #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
    print ‘All subprocesses done.‘

一次执行结果


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

parent process 7704

Waiting for all subprocesses done...

Run task Lee-6948

Run task Marlon-2896

Run task Allen-7304

Run task Frank-3052

Task Lee, runs 1.59 seconds.

Task Marlon runs 8.48 seconds.

Task Frank runs 15.68 seconds.

Task Allen runs 18.08 seconds.

All subprocesses done.

时间: 2024-10-10 17:53:31

Python多进程编程(转)的相关文章

Python多进程编程相关技术

由于Python的线程有些限制,例如多线程不能充分利用多核CPU等问题,因此在Python中我们更倾向使用多进程.但在做不阻塞的异步UI等场景,我们也会使用多线程.本篇文章主要探讨Python多进程的问题. Python在2.6引入了多进程的机制,并提供了丰富的组件及api以方便编写并发应用.multiprocessing包的组件Process, Queue, Pipe, Lock等组件提供了与多线程类似的功能.使用这些组件,可以方便地编写多进程并发程序. Process Process的使用有

python多进程编程

序. multiprocessingpython中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换.multiprocessing支持子进程.通信和共享数据.执行不同形式的同步,提供了Process.Queue.Pipe.Lock等组件. 1. Process 创建进程

python多进程编程中常常能用到的几种方法

python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程.python提供了非常好用的多进程包Multiprocessing,只需要定义一个函数,python会完成其它所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换.multiprocessing支持子进程.通信和共享数据.执行不同形式的同步,提供了Process.Queue.Pipe.LocK等组件 一.Process 语法:Process([group[,target

Python 多进程多线编程模板

一.Python 多进程多线程原理介绍 1. Python 全局解释器锁GIL a) Python的全局解释器锁GIL是互斥锁,能够防止本机多个线程一次执行Python字节码:由于CPython的内存管理在线程级别是不安全的(内存泄露),所以这个全局解释器锁是必须的.每个Python进程只能申请使用一个GIL锁,因此Python的多线程虽然是并发的但不能并行处理.Python的解释器每次只能执行一个线程,待GIL锁释放后再执行下一个线程,这样线程轮流被执行. b) Python2.x里,GIL的

python并发编程之多进程

python并发编程之多进程 一.什么是进程 进程:正在进行的一个过程或者一个任务,执行任务的是CPU. 原理:单核加多道技术 二.进程与程序的区别 进程是指程序的运行过程 需要强调的是:同一个程序执行两次是两个进程,比如打开暴风影音,虽然都是同一个软件,但是一个可以播放苍井空,另一个可以播放武藤兰. 三.并发与并行 无论是并行还是并发,在用户看来都是'同时'运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务. (1)并发

python-学习-python并发编程之多进程与多线程

一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.Python提供了multiprocessing.    multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似.  multiprocessing模块的功能众多:支持子进程.通信和共享数据.执行不同形式的同步,

Python的多进程编程

考虑到多线程,都在一个主进程中共享栈变量,在操作同一个局部变量时可能出现絮乱的现象,即使加锁也容易出现死锁的现象,小编在这里再次记录下多进程编程,废话不多说,直接上代码: #!/usr/bin/env python #encoding: utf-8 import multiprocessing import time def process_one(interval): n =5 while n >0: print ("the time is {0}".format(time.c

python使用multiprocessing进行多进程编程(1)

multiprocessing模块实现了对多进程编程的封装,让我们可以非常方便的使用多进程进行编程.它的使用方法非常类似threading模块. 1.创建一个进程 import multiprocessing def worker(): """worker function""" print 'Worker' return if __name__ == '__main__': jobs = [] for i in range(5): p = mu

python中的多线程和多进程编程

注意:多线程和多线程编程是不同的!!! 第一点:一个进程相当于一个要执行的程序,它会开启一个主线程,多线程的话就会再开启多个子线程:而多进程的话就是一个进程同时在多个核上进行: 第二点:多线程是一种并发操作(伪并行),它相当于把CPU的时间片分成一段一段很小的片段,然后分给各个线程交替进行,由于每个片段都很短,所以看上去像平行操作: (1)多线程操作案例: import threading class MyThread(threading.Thread): def __init__(self ,