秒懂快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n)算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来

快速排序核心:"基准"(pivot),分区(partition),交换(swap),递归(recursive)。

快速排序实现:

/*
 *author: booirror(at)163(dot)com
 *date: 2015/4/28
 */
#include <stdio.h>
void swap(int a[], int n, int m)
{
	if (n == m) return;
	int tmp = a[n];
	a[n] = a[m];
	a[m] = tmp;
}

void qsort(int a[], int n)
{
	int i, j;
	int last = 0;
	if (n < 2) return;
	swap(a, 0, n/2);
	for (i = 1; i < n; i++) {
		if (a[i] < a[0]) {
			swap(a, ++last, i);
		}
	}
	swap(a, 0, last);
	qsort(a, last);
	qsort(a+last+1, n-last-1);
}

int main()
{
	int i = 0;
    int ra[10] = {12, 23, 55, 33, 1, 25, 32, 99, 77, 11};
    qsort(ra, 10);

    while (i < 10)
        printf(" %d", ra[i++]);
    puts("\n");
    int ar[6] = {4, 22, 11, 77, 33, 41};
	qsort(ar, 6);
	for (i=0; i < 6; i++) {
		printf("%d ", ar[i]);
	}
	puts("\n");
    return 0;
}

快速排序的过程动画:

(完)

时间: 2024-11-03 20:50:25

秒懂快速排序的相关文章

【数据结构】大量数据(20万)的快速排序的递归与非递归算法、三数取中思想

快速排序的挖坑法与prev.cur法,我们在上一篇博客的第6个排序中讲的非常详细,http://10740184.blog.51cto.com/10730184/1774508[数据结构]常用排序算法(包括:选择排序,堆排序,冒泡排序,选择排序,快速排序,归并排序) 有兴趣的话,相信聪明的你,一看就会秒懂快速排序的思想. 下面,我们将快速排序优化: 1.三数取中来优化快速排序 优化原因: 快速排序的擦差不多每次将序列一分为二,时间复杂度是O(n*lgn). 我们思考,快速排序的时间复杂度是O(n

快速排序

快速排序的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 快速排序是一种不稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动 快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序.它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod). 该方法的基本思想是:

快速排序——Python

快速排序: 在一组数据中选择一个基准值,让后将数据分为两个部分,一部分大于基准,一部分小于基准,然后按此方法将两个部分分组,直到不能再分为止. 需要明白一个概念递归和分而治之的概念. Python实现: 1 # 快速排序 2 3 import random 4 5 def quick_sort(arr): 6 # 边界条件 7 if len(arr) < 2: 8 return arr 9 key = random.choice(arr) # 选择基准 10 left = [i for i in

快速排序的实现(不保证效率

众所周知,快速排序的核心是分治的思想,选一个基准出来,然后通过划分操作,使得,该元素最终处于的位置的左边的元素都小于等于它,右边的元素都大于等于它 划分操作就是两次递归嘛,没什么的,关键在于不借助外部空间我们如何实现划分操作 首先我们不知道该元素放在哪里,显然这是最后才能确定的, 我了解到一种填坑法的实现... 那就是首先保存第一个位置的值,然后从后向前扫描第一个小于x的值,我们就可以直接覆盖第一个位置的值,然后我们再从前向后找大于x的值, 把后面的坑填上 下面枚举几种情况 基准前后有相同数量的

快速排序的总结

快速排序的思想是分而治之,利用递归达到快速排序的效果 首先要选定一个基准数,一般选择最左边的数为基准数,排序的目标就是让这个基准数的左边全小于这个基准数,右边全大于这个基准数.然后以这个基准数为分隔线,在左右两侧再次调用这个排序的函数,直到全部有序.简述过程: 以  8 9 4 7 2 6 首选 1. 选择两个哨兵 i,j 分别指向8,6,基准数为8 2.从j哨兵开始,因为j指向的6小于基准数8,不符合j指向的数都要大于8的要求,所以将j指向的数覆盖i指向的数,同时i指向的数变成9 6 9 4

[数据结构] 快速排序

基本思想 快速排序(Quicksort)是对冒泡排序的一种改进,又称划分交换排序(partition-exchange sort. 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists). 步骤为: ①.从数列中挑出一个元素,称为"基准"(pivot) ②.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边).在这个分区结束之后,该基准就处于数列的中间位置.这个称

使用JAVA直观感受快速排序与冒泡排序的性能差异

初学算法,肯定会编写排序算法 其中两个最为有名的就是冒泡排序和快速排序 理论上冒泡排序的时间复杂度为O(N^2),快速排序的时间复杂度为O(NlogN) 下面本门使用JAVA,分别编写三段排序程序 对十万个0-9999的整数进行一次冒泡排序 对十万个0-9999的整数进行1000次快速排序,使用递归完成 对十万个0-9999的整数进行1000次快速排序,使用堆栈完成 对十万个0-9999的整数进行一次冒泡排序: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Swift实现的快速排序及sorted方法的对比

Swift语言有着优秀的函数式编程能力,面试的时候面试官都喜欢问我们快速排序,那么用Swift如何实现一个快速排序呢?首先扩展Array类: extension Array { var decompose : (head: T, tail: [T])? { return (count > 0) ? (self[0], Array(self[1..<count])) : nil } } 属性decompose的作用是返回数组中的第一个元素和剩下的元素,注意这个属性是可选型的,当count为0的时

Java实现排序算法之快速排序

一.综述 快速排序是交换排序中的一种,平均算法复杂度是O(nlogn),最坏O(n*n).下面用Java实现一个快速排序,并用注释的方式解释了思想和原理. 二.Java实现堆排序 三.结果检验 版权声明:本文为博主原创文章,未经博主允许不得转载.