IBinder对象在进程间传递的形式(一)

命题

当service经常被远程调用时,我们经常常使用到aidl来定一个接口供service和client来使用,这个事实上就是使用Binder机制的IPC通信。当client bind service成功之后,系统AM会调用回调函数onServiceConnected将service的IBinder传递给client, client再通过调用aidl生成的asInterface()方法获得service的调用接口,此时一个bind过程结束了,我们在client端就能够远程调用service的方法了。比如

            public void onServiceConnected(ComponentName className,
                    IBinder service) {
                mSecondaryService = ISecondary.Stub.asInterface(service);
            }

我们再看aidl生成的asInterface()的定义

	public static com.example.android.apis.app.ISecondary asInterface(android.os.IBinder obj)
	{
	if ((obj==null)) {
	return null;
	}
	android.os.IInterface iin = (android.os.IInterface)obj.queryLocalInterface(DESCRIPTOR);
	if (((iin!=null)&&(iin instanceof com.example.android.apis.app.ISecondary))) {
	return ((com.example.android.apis.app.ISecondary)iin);
	}
	return new com.example.android.apis.app.ISecondary.Stub.Proxy(obj);
	}

首先,asInterface()会去query传入的IBinder对象是否有LocalInterface,这里的LocalInterface是指传入的IBinder是service本身的引用还是代理。

1.当asInterface的输入的IBinder为server的引用(Binder类型)时,则直接返回该引用,那么此时调用server的方法不为IPC通信,而是直接的函数调用;

2.当asInterface的输入的IBinder为server的代理(BinderProxy类型)时,则须要创建该server的代理并返回,此时调用server的方法为IPC通信。

那么以上两种情况发生的条件是什么呢?这里我们先给出答案,然后再深入到代码中去研究2种不同的情况。

1.当client和service处在同样进程中的话,asInterface的输入的IBinder为server的引用时;

2.当client和service处在不同进程中的话,asInterface的输入的IBinder为server的代理。

在研究上述实现代码之前,我们先介绍一下IBinder作为參数使用IPC进程间传递时的状态变化,事实上这个就是我们本篇文章的核心内容,理解了这个机制,我们就会非常easy理解我们上述的那个命题的原理了。

模型

IBinder作为參数在IPC通信中进行传递,可能会使某些人困惑,IBinder不就是IPC通信的媒介吗?怎么还会被作为參数来传递呢,这样理解就有点狭隘了,拿native层的IPC来说,client从SM(service manager)中获取service端的Interface,这个Interface同一时候也是IBinder类型,当C/S两端须要双工通信时,即所谓的Service端须要反过来调用Client端的方法时,就须要client通过前述的那个Interface将Client端的IBinder传递给Service。

拿Java应用层的Service来说更是如此,如本文的这个命题,以下我们会分析,首先来介绍原理性的知识。

Binder IPC通信中,Binder是通信的媒介,Parcel是通信的内容。方法远程调用过程中,其參数都被打包成Parcel的形式来传递的。IBinder对象也不例外,我们看一下Parcel类中的writeStrongBinder()(因为java层和native层的方法是相相应的,java层仅仅是native的封装,因此我们仅仅须要看native的就可以),

status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
    return flatten_binder(ProcessState::self(), val, this);
}
status_t flatten_binder(const sp<ProcessState>& proc,
    const sp<IBinder>& binder, Parcel* out)
{
    flat_binder_object obj;
    
    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
    if (binder != NULL) {
        IBinder *local = binder->localBinder();
        if (!local) {
            BpBinder *proxy = binder->remoteBinder();
            if (proxy == NULL) {
                LOGE("null proxy");
            }
            const int32_t handle = proxy ? proxy->handle() : 0;
            obj.type = BINDER_TYPE_HANDLE;
            obj.handle = handle;
            obj.cookie = NULL;
        } else {
            obj.type = BINDER_TYPE_BINDER;
            obj.binder = local->getWeakRefs();
            obj.cookie = local;
        }
    } else {
        obj.type = BINDER_TYPE_BINDER;
        obj.binder = NULL;
        obj.cookie = NULL;
    }
    
    return finish_flatten_binder(binder, obj, out);
}

上面代码分以下2种情况

1. 假设传递的IBinder为service的本地IBinder对象,那么该IBinder对象为BBinder类型的,因此上面的local不为NULL,故binder type为BINDER_TYPE_BINDER。

2. 假设传递的IBinder对象代理IBinder对象,那么binder type则为BINDER_TYPE_HANDLE。

client端将方法调用參数打包成Parcel之后,会发送到内核的Binder模块,因此以下我们将分析一下内核的Binder模块的处理。

kernel/drivers/staging/android/Binder.c中的函数binder_transaction()

switch (fp->type) {
        case BINDER_TYPE_BINDER:
        case BINDER_TYPE_WEAK_BINDER: {
            struct binder_ref *ref;
            struct binder_node *node = binder_get_node(proc, fp->binder);
            if (node == NULL) {
                node = binder_new_node(proc, fp->binder, fp->cookie);
                if (node == NULL) {
                    return_error = BR_FAILED_REPLY;
                    goto err_binder_new_node_failed;
                }
                node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;
                node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);
            }
            if (fp->cookie != node->cookie) {
                binder_user_error("binder: %d:%d sending u%p "
                    "node %d, cookie mismatch %p != %p\n",
                    proc->pid, thread->pid,
                    fp->binder, node->debug_id,
                    fp->cookie, node->cookie);
                goto err_binder_get_ref_for_node_failed;
            }
            ref = binder_get_ref_for_node(target_proc, node);
            if (ref == NULL) {
                return_error = BR_FAILED_REPLY;
                goto err_binder_get_ref_for_node_failed;
            }
            if (fp->type == BINDER_TYPE_BINDER)
                fp->type = BINDER_TYPE_HANDLE;
            else
                fp->type = BINDER_TYPE_WEAK_HANDLE;
            fp->handle = ref->desc;
            binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE,
                       &thread->todo);

            binder_debug(BINDER_DEBUG_TRANSACTION,
                     "        node %d u%p -> ref %d desc %d\n",
                     node->debug_id, node->ptr, ref->debug_id,
                     ref->desc);
        } break;
        case BINDER_TYPE_HANDLE:
        case BINDER_TYPE_WEAK_HANDLE: {
            struct binder_ref *ref = binder_get_ref(proc, fp->handle);
            if (ref == NULL) {
                binder_user_error("binder: %d:%d got "
                    "transaction with invalid "
                    "handle, %ld\n", proc->pid,
                    thread->pid, fp->handle);
                return_error = BR_FAILED_REPLY;
                goto err_binder_get_ref_failed;
            }
            if (ref->node->proc == target_proc) {
                if (fp->type == BINDER_TYPE_HANDLE)
                    fp->type = BINDER_TYPE_BINDER;
                else
                    fp->type = BINDER_TYPE_WEAK_BINDER;
                fp->binder = ref->node->ptr;
                fp->cookie = ref->node->cookie;
                binder_inc_node(ref->node, fp->type == BINDER_TYPE_BINDER, 0, NULL);
                binder_debug(BINDER_DEBUG_TRANSACTION,
                         "        ref %d desc %d -> node %d u%p\n",
                         ref->debug_id, ref->desc, ref->node->debug_id,
                         ref->node->ptr);
            } else {
                struct binder_ref *new_ref;
                new_ref = binder_get_ref_for_node(target_proc, ref->node);
                if (new_ref == NULL) {
                    return_error = BR_FAILED_REPLY;
                    goto err_binder_get_ref_for_node_failed;
                }
                fp->handle = new_ref->desc;
                binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);
                binder_debug(BINDER_DEBUG_TRANSACTION,
                         "        ref %d desc %d -> ref %d desc %d (node %d)\n",
                         ref->debug_id, ref->desc, new_ref->debug_id,
                         new_ref->desc, ref->node->debug_id);
            }
        } break;

上面代码也分为了2种不同的分支:

1. 传来的IBinder类型为BINDER_TYPE_BINDER时,会将binder type值为BINDER_TYPE_HANDLE;

2. 传来的IBinder类型为BINDER_TYPE_HANDLE时,会推断该IBinder的实体被定义的进程(也就是该IBinder代表的server被定义的进程)与目标进程(也即IBinder被传递的目标进程)是否同样,假设同样,则将该IBinder type转化为BINDER_TYPE_BINDER,同一时候使其变为IBinder本地对象的引用。

通过上述的处理,我们能够得出以下结论:

1.不同进程间传递的IBinder本地对象引用(BINDER_TYPE_BINDER类型),在内核中均会被转化为代理(BINDER_TYPE_HANDLE类型,眼下仅仅是改变其类型,在IBinder接收方会依据其类型转化为代理);

2.因为仅仅有不同进程间传递才会将IBinder发送到Binder模块,所以IBinder在多级传递的过程中,有以下2种可能 进程A-->进程B-->进程A,进程A-->进程B-->进程C;其相应的IBinder类型就是BINDER_TYPE_BINDER-->BINDER_TYPE_HANDLE-->BINDER_TYPE_BINDER,BINDER_TYPE_BINDER-->BINDER_TYPE_HANDLE-->BINDER_TYPE_HANDLE。

依据上述结论,我们就会明确Binder IPC通信过程中,同样进程间的IBinder本地对象,假设不经过不同进程的传递,那么IBinder就不会传给内核的Binder模块,因此它一直是IBinder的本地对象;假设在进程间传递,即使通过再多的进程间的传递,仅仅要最后的目标是同一个进程的component,那么他得到的IBinder对象就是本地的对象。

套用模型

理解了上面的这个模型,我们再回过头看最開始的那个命题结论就非常好理解了

1.当client和service处在同样进程中的话,asInterface的输入的IBinder为server的引用时;

2.当client和service处在不同进程中的话,asInterface的输入的IBinder为server的代理。

假如某一个component(比如一个Acitivity)处在进程A,它须要bind一个service,而该service处在进程B中,我们简介一下bind的过程。

1. 进程A向AM(进程system_server)发出Bind请求,并将回调ServiceConnection提供给AM(传递给AM的也是一个接口(IServiceConnection),由于AM与A之间是双工通信,所以A须要向AM提供IBinder);

2. AM启动进程B并创建service,进程B将service的IBinder对象传递给AM,AM再通过IServiceConnection传递给进程A。所以service的IBinder对象的传递路径为:进程B-->进程system_server(AM)-->进程A。

套用上面的模型,就会得出本文最開始命题的结论。

便于理解下图给出里bind 一个service的过程

IBinder对象在进程间传递的形式(一),布布扣,bubuko.com

时间: 2024-09-30 14:06:47

IBinder对象在进程间传递的形式(一)的相关文章

记一次WinForm程序中主进程打开子进程并传递参数的操作过程(进程间传递参数)

目标:想在WinForm程序之间传递参数.以便子进程作出相应的处理. 一种错误的方法 父进程的主程序: 1 ProcessStartInfo psi = new ProcessStartInfo(); 2 psi.FileName = "ProcessChild.exe"; 3 psi.Arguments = txtArgs.Text; 4 Process.Start(psi);//主要问题在这里 子进程的主程序: 1 txtArgs.Text = Process.GetCurrent

进程间传递文件描述符

下面的实例展示了如何使用Unix域套接字在进程间传递文件描述符 参考文献:1) <Unix网络编程> 2)  http://book.51cto.com/art/200912/168560.htm 最近学习了使用Unix域套接字在进程间传递文件描述符,仿照参考资料,自己也写了简单的程序来实践这种技术. 其他不多说了,具体理论知识参见参考资料,开始我自己的程序介绍(在OpenSolaris 2009.06平台上测试): 1  程序作用说明:父进程,子进程以及另外一个进程向同一个文件的文件描述符向

WPF 进程间传递参数

WPF 进程间传递参数 在软件开发中有时需要在一个软件中启动另一个软件,这时用Process.Start("软件路径")可以启动另一个软件.如果在这个过程中还需要传递一些参数给新启动的软件,可以通过WPF中的Application_Startup来完成: 首先,在需要启动的WPF项目中的APP中注册Application_Startup事件: private void Application_Startup(object sender, StartupEventArgs e) { if

进程间传递文件描述符——sendmsg和recvmsg函数

先引入一个例子,该程序的目的是子进程向父进程传递文件描述符,并通过该文件描述符读取buf. #include <func.h> int main(){ int fds[2]; pipe(fds); if(!fork()){ close(fds[1]); int fd; read(fds[0], &fd, sizeof(fd)); printf("child fd = %d\n", fd); char buf[128] = {0}; read(fd, buf, siz

在进程间传递文件描述符

由于fork调用之后,父进程中打开的文件描述符在子进程中仍然保持打开,所以文件描述符可以很方便地从父进程传递到子进程.需要注意的是,传递一个文件描述符并不是传递一个文件描述符的值,而是要在接收进程中创建一个新的文件描述符,并且该文件描述符和发送进程中被传递的文件描述符指向内核中相同的文件表项. 在Linux下,我们可以利用UNIX城socket在进程间传递特殊的辅助数据,以实现文件描述符的传递,它在子进程中打开一个文件描述符,然后将它传递给父进程,父进程则通过读取该文件描述符来获得文件的内容.

JavaScript学习总结(三、函数声明和表达式、this、闭包和引用、arguments对象、函数间传递参数)

一.函数声明和表达式 函数声明: function test() {}; test();    //运行正常 function test() {}; 函数表达式: var test = function() {}; test;    //undefined test();   //TypeError var test = function() {}; 命名函数的赋值表达式: var test = function bar() { test();    //正常运行 }; test();    /

linux:利用socketpair来在进程间传递描述符

1.socketpair 2.sendmsg/recvmsg 3.UNIX域套接字传递描述字 功能:创建一个圈双工的流管道 原型: int socketpair(int domain, int type, int protocol, int sv[2]); 参数 domain :协议家族    type: 套接字种类    protocol:协议种类    sv:返回的套接字对 返回值: 成功返回0, 失败返回-1 通过sockpair创建的全双通管道可以实现父子间进程通讯 #include <

[Android Pro] AIDL进程间传递自定义类型参数

1.创建.aidl 文件 AIDL 语法简单,用来声明接口,其中的方法接收参数和返回值,但是参数和返回值的类型是有约束的,且有些类型是需要 import,另外一些则无需这样做. AIDL 支持的数据类型划分为四类,第一类是 Java 编程语言中的基本类型,第二类包括 String.List.Map 和 CharSequence,第三类是其他 AIDL 生成的 interface,第四类是实现了 Parcelable protocol 的自定义类. 其中,除了第一类外,其他三类在使用时均需要特别小

python进程间传递文件描述符扩展库

由于python本身的线程基本上比较残废,所以为了利用机器的cpu,就不得不用上多进程... 在游戏服务器的设计中,最为常见的方式是: 挂一个前端服务器,专门来维护与客户端的连接,然后将客户端的请求数据转发给后端服务器... 上面的方式是现在最为正统的... 但是自己因为环境的限制,需要做到对客户端透明,然后将后端的服务器转换成为多进程的...所以这里就只有用一点比较别扭的方法了,首先处理登录等一些常规的逻辑放在前端服务器,当进入放进进行匹配战斗之后,将客户端的socket连接直接交给后端服务器