你应该掌握的七种回归技术

转自:http://www.iteye.com/news/30875

英文原文:https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/

【编者按】回归分析是建模和分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素。

什么是回归分析?

回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通 事 故数量之间的关系,最好的研究方法就是回归。

回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。

我们为什么使用回归分析?

如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它:

比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。

使用回归分析的好处良多。具体如下:

1.它表明自变量和因变量之间的显著关系; 
2.它表明多个自变量对一个因变量的影响强度。 
回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。

我们有多少种回归技术?

有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。

对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法:

1. Linear Regression线性回归

它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。

线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。

用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

一元线性回归和多元线性回归的区别在于,多元线性回归有(>1)个自变量,而一元线性回归通常只有1个自变量。现在的问题是“我们如何得到一个最佳的拟合线呢?”。

如何获得最佳拟合线(a和b的值)?

这个问题可以使用最小二乘法轻松地完成。最小二乘法也是用于拟合回归线最常用的方法。对于观测数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。因为在相加时,偏差先平方,所以正值和负值没有抵消。

我们可以使用R-square指标来评估模型性能。想了解这些指标的详细信息,可以阅读:模型性能指标Part 1,Part 2 .

要点:

  • 自变量与因变量之间必须有线性关系
  • 多元回归存在多重共线性,自相关性和异方差性。
  • 线性回归对异常值非常敏感。它会严重影响回归线,最终影响预测值。
  • 多重共线性会增加系数估计值的方差,使得在模型轻微变化下,估计非常敏感。结果就是系数估计值不稳定
  • 在多个自变量的情况下,我们可以使用向前选择法,向后剔除法和逐步筛选法来选择最重要的自变量。

2.Logistic Regression逻辑回归

逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,我们就应该使用逻辑回归。这里,Y的值从0到1,它可以用下方程表示。

Java代码

  1. odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
  2. ln(odds) = ln(p/(1-p))
  3. logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk

上述式子中,p表述具有某个特征的概率。你应该会问这样一个问题:“我们为什么要在公式中使用对数log呢?”。

因为在这里我们使用的是的二项分布(因变量),我们需要选择一个对于这个分布最佳的连结函数。它就是Logit函数。在上述方程中,通过观测样本的极大似然估计值来选择参数,而不是最小化平方和误差(如在普通回归使用的)。

要点:

  • 它广泛的用于分类问题。
  • 逻辑回归不要求自变量和因变量是线性关系。它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。
  • 为了避免过拟合和欠拟合,我们应该包括所有重要的变量。有一个很好的方法来确保这种情况,就是使用逐步筛选方法来估计逻辑回归。
  • 它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。
  • 自变量不应该相互关联的,即不具有多重共线性。然而,在分析和建模中,我们可以选择包含分类变量相互作用的影响。
  • 如果因变量的值是定序变量,则称它为序逻辑回归。
  • 如果因变量是多类的话,则称它为多元逻辑回归。

3. Polynomial Regression多项式回归

对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。如下方程所示:

Java代码

  1. y=a+b*x^2

在这种回归技术中,最佳拟合线不是直线。而是一个用于拟合数据点的曲线。

重点:

  • 虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。下面是一个图例,可以帮助理解:

  • 明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。更高次的多项式最后可能产生怪异的推断结果。

4. Stepwise Regression逐步回归

在处理多个自变量时,我们可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。

这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。下面列出了一些最常用的逐步回归方法:

  • 标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
  • 向前选择法从模型中最显著的预测开始,然后为每一步添加变量。
  • 向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显着性的变量。

这种建模技术的目的是使用最少的预测变量数来最大化预测能力。这也是处理高维数据集的方法之一。 
5. Ridge Regression岭回归

岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。

上面,我们看到了线性回归方程。还记得吗?它可以表示为:

Java代码

  1. y=a+ b*x

这个方程也有一个误差项。完整的方程是:

Java代码

  1. y=a+b*x+e (error term),  [error term is the value needed to correct for a prediction error between the observed and predicted value]

Java代码

  1. => y=a+y= a+ b1x1+ b2x2+....+e, for multiple independent variables.

在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。

岭回归通过收缩参数λ(lambda)解决多重共线性问题。看下面的公式

在这个公式中,有两个组成部分。第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。

要点:

除常数项以外,这种回归的假设与最小二乘回归类似; 
它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能 
这是一个正则化方法,并且使用的是L2正则化。 
6. Lasso Regression套索回归

它类似于岭回归,Lasso (Least Absolute Shrinkage and Selection Operator)也会惩罚回归系数的绝对值大小。此外,它能够减少变化程度并提高线性回归模型的精度。看看下面的公式:

Lasso 回归与Ridge回归有一点不同,它使用的惩罚函数是绝对值,而不是平方。这导致惩罚(或等于约束估计的绝对值之和)值使一些参数估计结果等于零。使用惩罚值越大,进一步估计会使得缩小值趋近于零。这将导致我们要从给定的n个变量中选择变量。

要点:

  • 除常数项以外,这种回归的假设与最小二乘回归类似;
  • 它收缩系数接近零(等于零),这确实有助于特征选择;
  • 这是一个正则化方法,使用的是L1正则化

如果预测的一组变量是高度相关的,Lasso 会选出其中一个变量并且将其它的收缩为零。

7.ElasticNet回归

ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。

Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。

要点:

  • 在高度相关变量的情况下,它会产生群体效应;
  • 选择变量的数目没有限制;
  • 它可以承受双重收缩。

除了这7个最常用的回归技术,你也可以看看其他模型,如BayesianEcologicalRobust回归。

如何正确选择回归模型?

当你只知道一个或两个技术时,生活往往很简单。我知道的一个培训机构告诉他们的学生,如果结果是连续的,就使用线性回归。如果是二元的,就使用逻辑回归!然而,在我们的处理中,可选择的越多,选择正确的一个就越难。类似的情况下也发生在回归模型中。

在多类回归模型中,基于自变量和因变量的类型,数据的维数以及数据的其它基本特征的情况下,选择最合适的技术非常重要。以下是你要选择正确的回归模型的关键因素:

  • 数据探索是构建预测模型的必然组成部分。在选择合适的模型时,比如识别变量的关系和影响时,它应该首选的一步。
  • 比较适合于不同模型的优点,我们可以分析不同的指标参数,如统计意义的参数,R-square,Adjusted R-square,AIC,BIC以及误差项,另一个是Mallows‘ Cp准则。这个主要是通过将模型与所有可能的子模型进行对比(或谨慎选择他们),检查在你的模型中可能出现的偏差。
  • 交叉验证是评估预测模型最好额方法。在这里,将你的数据集分成两份(一份做训练和一份做验证)。使用观测值和预测值之间的一个简单均方差来衡量你的预测精度。
  • 如果你的数据集是多个混合变量,那么你就不应该选择自动模型选择方法,因为你应该不想在同一时间把所有变量放在同一个模型中。
  • 它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度[*]统计学意义的模型相比,更易于实现。
  • 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好。

时间: 2024-10-04 00:19:24

你应该掌握的七种回归技术的相关文章

浏览器端技术体系概览 -- 前端开发的七种武器

科普文一则,说说我对前端技术体系(也称浏览器端技术体系)的认识,希望能让更多人了解前端,也希望能借此丰富前端开发的大局观. 去年我写了网站性能优化系列文章,看过的朋友会知道,这类文章重点并非介绍各种具体的优化技巧,而是在关注发掘这些优化点的思路和方法.然后介绍给大家多种检测手段去发现问题,进而有目标的解决问题.所有这些需要我们对有网页整个生命周期有清晰的认识,对网页中各种技术极其相互结合的方式有明确的认知.这就回归到一个更本质的问题:浏览器端技术体系是怎样的. 想用三言两语说清前端技术不大可能,

大话存储 3 - 七种磁盘RAID技术

RAID技术 Redundant Array of Independent Disks 由独立的磁盘组成的具有冗余特性的阵列. 有两个特性: 阵列:需要很多磁盘来组成 冗余:允许某块磁盘损坏之后,数据仍然可用 目前,单块磁盘容量只有几T,对于现代应用程序来说远远不够.为了提供容量更大的磁盘,发明了RAID技术. ? 1 七种RAID简介 RAID 0 4个磁盘组成一个阵列 4个扇区组成的块作为基本单元 不同磁盘的相同偏移处的块组合成Stripe 数据写入:数据被分成多块写入4个磁盘,而不是顺序写

机器学习(七)—回归

摘要:本文分别介绍了线性回归.局部加权回归和岭回归,并使用python进行了简单实现. 在这之前,已经学习过了Logistic回归,今天继续看回归.首先说一下回归的由来:回归是由达尔文的表兄弟Francis Galton发明的.Galton于1877年完成了第一次回归预测,目的是根据上一代豌豆的种子(双亲)的尺寸来预测下一代豌豆种子(孩子)的尺寸(身高).Galton在大量对象上应用了回归分析,甚至包括人的身高.他得到的结论是:如果双亲的高度比平均高度高,他们的子女也倾向于平均身高但尚不及双亲,

七种网卡绑定模式详解

概览: 目前网卡绑定mode共有七种(0~6)bond0.bond1.bond2.bond3.bond4.bond5.bond6 常用的有三种: mode=0:平衡负载模式,有自动备援,但需要"Switch"支援及设定. mode=1:自动备援模式,其中一条线若断线,其他线路将会自动备援. mode=6:平衡负载模式,有自动备援,不必"Switch"支援及设定. 说明: 需要说明的是如果想做成mode 0的负载均衡,仅仅设置这里optionsbond0 miimon

面试官的七种武器:Java篇

起源 自己经历过的面试也不少了,互联网的.外企的,都有.总结一下这些面试的经验,发现面试官问的问题其实不外乎几个大类,玩不出太多新鲜玩意的.细细想来,面试官拥有以下七种武器.恰似古龙先生笔下的武侠世界中的七种武器.下面我为各位一一道来. (欢迎转载.转载请注明出处:http://www.cnblogs.com/hzg1981/) 长生剑=语言基础 长生剑是七种武器之首,同理,编程语言的考察也是技术面试中最基本的.这条不满足的就直接Pass了.以Java为例,语言的考察大致可以分为三个层次: 初级

JS_七种JAVASCRIPT加密/解密方法

本文一共介绍了七种JAVASCRIPT加密方法. 一:最简单的加密解密 二:转义字符的妙用 三:使用Microsoft出品的脚本编码器Script Encoder来进行编码 (自创简单解码) 四:任意添加NUL空字符(十六进制00H) (自创) 五:无用内容混乱以及换行空格TAB大法 六:自写解密函数法 七:错误的利用 在做网页时(其实是网页木马呵呵),最让人烦恼的是自己辛辛苦苦写出来的客户端IE运行的JAVASCRIPT代码常常被别人轻易的拷贝,实在让自己的心里有点不是滋味,要知道自己写点东西

这七种数据分析领域中最为人称道的降维方法

这七种数据分析领域中最为人称道的降维方法 感谢王穆荣的投稿,转自数盟社区 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现.于此同时,这也推动了数据降维处理的应用.实际上,数据量有时过犹不及.有时在数据分析应用中大量的数据反而会产生更坏的性能. 最新的一个例子是采用 2009 KDD Challenge 大数据集来预测客户流失量. 该数据集维度达到 15000 维. 大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢.该项目的最重要的就是在

SDN要防止七种认识偏差

编者按:SDN在获得关注并得到大力开发研究的时候,依然存在对它认识的偏差,归结起来这样的偏差有七种. 在过去几年中,SDN理念已经在业界获得极高关注.大部分企业已经意识到该技术的存在,并有计划地进行实施或者有计划地对其加以评估.但与此同时,关于该技术的认识偏差仍然广泛存在,归结起来共有七类常见误解. 1.SDN只是云与服务供应商的事.在过去12到18个月当中,这仍然是曝光率最高的常见误解.尽管各早期SDN实施者多数属于云服务供应商以及使用大规模网络体系的企业,但SDN的实际收益(包括敏捷性.成本

shell实例浅谈之三产生随机数七种方法

一.问题 Shell下有时需要使用随机数,在此总结产生随机数的方法.计算机产生的的只是"伪随机数",不会产生绝对的随机数(是一种理想随机数).伪随机数在大量重现时也并不一定保持唯一,但一个好的伪随机产生算法将可以产生一个非常长的不重复的序列. 二.随机数 1.生成随机数的七种方法 (1)通过内部系统变量($RANDOM) echo $RANDOM 生成0-32767之间的整数随机数,若超过5位可以加个固定10位整数,然后进行求余. 生成400000~500000的随机数: #!/bin