POJ 3723 Conscription(最大生成森林)

题目链接:http://poj.org/problem?id=3723

题意需要征募男兵M人,女兵N人,每征募一个人需要10000元,但是已经征募 的人中有和待征募的人关系密切的可以少花点钱,求通过适当的顺序使得征募所有人所需的费用最小。

思路:这是二分图的背景,是陷阱,没用,征募a动用了a和b关系,那么(a,b)连成一条边,虽然这条边是有向的,但是不管是谁先征募最后的结果都相同所以是无向图的最大生成森林,使得关系利用到最大,然后把边权取反后就可以用基本的最小生成森林来解决了。

//800K	391MS
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,r,res;
int f[20100];
struct edge{int u,v,cost;};
bool comp(const edge& e1,const edge& e2){
    return e1.cost<e2.cost;
}
edge es[50100];
void ini()
{
    scanf("%d%d%d",&n,&m,&r);
    for(int i=1;i<=r;i++){
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        es[i].u=u+1;
        es[i].v=1+v+n;
        es[i].cost=-1*w;
    }

}
int getf(int x)
{
    return x==f[x]? x:f[x]=getf(f[x]);
}
bool same(int x,int y)
{
    return getf(x)==getf(y)? 1:0;
}
void unite(int x,int y)
{
    int t1=getf(x),t2=getf(y);
    if(t1==t2) return ;
    f[t2]=t1;
}
void kruskal()
{
    sort(es+1,es+r+1,comp);
    for(int i=1;i<=n+m;i++) f[i]=i;
    res=0;
    for(int i=1;i<=r;i++){
        edge e=es[i];
        if(!same(e.u,e.v)){
            res+=e.cost;
            unite(e.u,e.v);
        }
    }
}
int main()
{
    int _;
    scanf("%d",&_);
    while(_--){
        ini();
        kruskal();
        printf("%d\n",(n+m)*10000+res);
    }
    return 0;
}
时间: 2024-10-27 13:51:53

POJ 3723 Conscription(最大生成森林)的相关文章

poj - 3723 Conscription(最大权森林)

http://poj.org/problem?id=3723 windy需要挑选N各女孩,和M各男孩作为士兵,但是雇佣每个人都需要支付10000元的费用,如果男孩x和女孩y存在亲密度为d的关系,只要他们其中有一个已经被选中,那么在选另一个人需要的费用为100000-d,给定R个关系,输出一个最低费用,每个关系只能使用一次. 把人看作顶点,关系看作边,就可以转化为无向图中的最大权森林问题,最大权森林问题可以通过把所有边权取反之后用最小生成树的算法求解. 1 #include <cstdio> 2

poj 3723 Conscription 【最大生成树|最大权森林】

题目:poj 3723 Conscription 题意:要征兵n个男兵和m个女兵,每个花费10000元,但是如果已经征募的男士兵中有和将要征募的女士兵关系好的,那么可以减少花费,给出关系,求最小花费. 分析:这个题目初始一个是个二分图,以为可以从这里入手,但是这个题目这个性质没用. 初始花费没人10000,那么减去其中有关系的就是当前的花费. 要是花费最少,那么减去的最大即可,又因为没人只征募一次,即最多选择一个,所以减去一个最大生成树就ok AC代码: #include <cstdio> #

poj 3723 Conscription(最小生成树拓展)

Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7702   Accepted: 2667 Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be

POJ 3723 Conscription (最大权森林 + Kruskal算法)

Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8317   Accepted: 2887 Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be

POJ 3723.Conscription 最小生成树

Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13438   Accepted: 4699 Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to b

POJ 3723 Conscription

http://poj.org/problem?id=3723 这道题 把男生画一边 女生画一边 ---->是一个二部图的结构 就很容易看出 要pay最少 实际上就是找到一个连接所有点权值和最大的图 但是又要求 一个人只能使用一种关系减钱 所以不能有回路 ---->是一棵树 所以就是求最大生成树 有了前面并查集题目的经验 我们可以让i < N为女生 i >=N 作为男生 来维持这个并查集 那么就自然的使用Kruskal即可 1 #include <iostream> 2

POJ 3723 Conscription(征兵) 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:http://poj.org/problem?id=3723 Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect

POJ 3723 Conscription (Kruskal并查集求最小生成树)

Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14661   Accepted: 5102 Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to b

poj 3723 Conscription(最大生成树)

题意:招募n个女生与m个男生,每人花费需10000,若两人间存在亲密度,则可少花费两人的亲密度,求最小花费: 思路:相当于一幅无向图,给定边权,求权值和最大的森林,结果为10000*(n+m)-权值和: #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> using namespace std; struct edge{ i