Problem Description
PM Room defines a sequence A = {A1, A2,..., AN}, each of which is either 0 or 1. In order to beat him, programmer Moor has to construct another sequence B = {B1, B2,... , BN}
of the same length, which satisfies that:
Input
The input consists of multiple test cases. The number of test cases T(T<=100) occurs in the first line of input.
For each test case:
The first line contains a single integer N (1<=N<=100000), which denotes the length of A and B.
The second line consists of N integers, where the ith denotes Ai.
Output
Output the minimal f (A, B) when B is optimal and round it to 6 decimals.
Sample Input
4 9 1 1 1 1 1 0 0 1 1 9 1 1 0 0 1 1 1 1 1 4 0 0 1 1 4 0 1 1 1
Sample Output
1.428571 1.000000 0.000000 0.000000
题意:给了你一个A序列由0,1组成,然后让你找一个等长的B序列使得对应数差的平方和是最小的
思路:最后得到的数列的形如{x1, x1, x2, x2 ..... xn, xn},且{x1 < x2 < ... < xn},首先我们可以得到某段区间[xl, xl+1, .. xr]和是
∑(xl, xr) (xi-x)^2, 我们可以知道他是一个形如:ax^2+bx+c 的函数,所以我们可以得到最小值的x是这个区间数的平均值,
我们将过程模拟成栈,那么扫描入栈一个我们就判断它求的x与栈顶的值时候满足非递减的关系,不是的话我们合并,处理完后求值就行了
num[i]表示该区间1的个数,len[i]表示该区间的长度
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 100005; double num[maxn], len[maxn]; int main() { int t, n; scanf("%d", &t); while (t--) { scanf("%d", &n); int cnt = 0, a; for (int i = 0; i < n; i++) { scanf("%d", &a); num[cnt] = a; len[cnt++] = 1; while (cnt >= 2) { if (num[cnt-1]/len[cnt-1] > num[cnt-2]/len[cnt-2]) break; num[cnt-2] += num[cnt-1]; len[cnt-2] += len[cnt-1]; cnt--; } } double ans = 0.0; for (int i = 0; i < cnt; i++) { double tmp = num[i]/len[i]; ans += tmp*tmp*(len[i]-num[i]) + (1-tmp)*(1-tmp)*num[i]; } printf("%.6lf\n", ans); } return 0; }
HDU 4923 Room and Moor,布布扣,bubuko.com