后缀数组倍增算法超时,听说用3DC可以勉强过,不愿写了,直接用hash+二分求出log(n)的时间查询两个字符串之间的任意两个位置的最长前缀.
我自己在想hash的时候一直在考虑hash成数值时MOD取多大,如果取10^18的话,那么两数相乘个就超LL了,但是取10^9的话又怕出现重复的可能大.后面才发现自己是sb,如果用unsigned long long 如果有溢出或者为负数是直接变成对(1<<64)取模了。 也就是无符号长整形运算自动帮你取模了。所以可以放心用hash
Justice String
Time Limit: 2000ms
Memory Limit: 65536KB
64-bit integer IO format: %lld Java class name: Main
Submit Status Statistics Discuss
Type:
None
Graph Theory
2-SAT
Articulation/Bridge/Biconnected Component
Cycles/Topological Sorting/Strongly Connected Component
Shortest Path
Bellman Ford
Dijkstra/Floyd Warshall
Euler Trail/Circuit
Heavy-Light Decomposition
Minimum Spanning Tree
Stable Marriage Problem
Trees
Directed Minimum Spanning Tree
Flow/Matching
Graph Matching
Bipartite Matching
Hopcroft–Karp Bipartite Matching
Weighted Bipartite Matching/Hungarian Algorithm
Flow
Max Flow/Min Cut
Min Cost Max Flow
DFS-like
Backtracking with Pruning/Branch and Bound
Basic Recursion
IDA* Search
Parsing/Grammar
Breadth First Search/Depth First Search
Advanced Search Techniques
Binary Search/Bisection
Ternary Search
Geometry
Basic Geometry
Computational Geometry
Convex Hull
Pick‘s Theorem
Game Theory
Green Hackenbush/Colon Principle/Fusion Principle
Nim
Sprague-Grundy Number
Matrix
Gaussian Elimination
Matrix Exponentiation
Data Structures
Basic Data Structures
Binary Indexed Tree
Binary Search Tree
Hashing
Orthogonal Range Search
Range Minimum Query/Lowest Common Ancestor
Segment Tree/Interval Tree
Trie Tree
Sorting
Disjoint Set
String
Aho Corasick
Knuth-Morris-Pratt
Suffix Array/Suffix Tree
Math
Basic Math
Big Integer Arithmetic
Number Theory
Chinese Remainder Theorem
Extended Euclid
Inclusion/Exclusion
Modular Arithmetic
Combinatorics
Group Theory/Burnside‘s lemma
Counting
Probability/Expected Value
Others
Tricky
Hardest
Unusual
Brute Force
Implementation
Constructive Algorithms
Two Pointer
Bitmask
Beginner
Discrete Logarithm/Shank‘s Baby-step Giant-step Algorithm
Greedy
Divide and Conquer
Dynamic Programming
Tag it!
Given two strings A and B, your task is to find a substring of A called justice string, which has the same length as B, and only has at most two characters different from B.
Input
The first line of the input contains a single integer T, which is the number of test cases.
For each test case, the first line is string A, and the second is string B.
Both string A and B contain lowercase English letters from a to z only. And the length of these two strings is between 1 and 100000, inclusive.
Output
For each case, first output the case number as "Case #x: ", and x is the case number. Then output a number indicating the start position of substring C in A, position is counted from 0. If there is no such substring C, output -1.
And if there are multiple solutions, output the smallest one.
Sample Input
3 aaabcd abee aaaaaa aaaaa aaaaaa aabbb
Sample Output
Case #1: 2 Case #2: 0 Case #3: -1
Source
2014 ACM-ICPC Beijing Invitational Programming Contest
#include <iostream> #include <stdio.h> #include <string.h> #include <string> #include <algorithm> #include <math.h> #include <stdlib.h> using namespace std; #define N 100100 #define KEY 31 typedef unsigned long long ul; char a[N],b[N]; ul base[N]; ul hha[N],hhb[N]; int lena,lenb; ul gethash(int x,int y,ul g[]) { if(x>y) return 0; return g[x]-g[y+1]*base[y+1-x]; } int lcp(int pa,int pb)//求a串以pa为起始,与b串以pb为起始,最长的前缀 { int b=0,d=lenb-pb;//最小一个相同的都没有,最多有lenb个 while(b<d) { int mid=(b+d+1)/2; if( gethash(pa,pa+mid-1,hha)==gethash(pb,pb+mid-1,hhb) ) b=mid; else d=mid-1; } return b; } int main() { int T; int tt=1; long long tmp=1; for(int i=0;i<N;i++) { base[i]=tmp; tmp*=KEY; } scanf("%d",&T); while(T--) { scanf("%s%s",a,b); lena=strlen(a); lenb=strlen(b); memset(hha,0,sizeof(hha)); memset(hhb,0,sizeof(hhb)); hha[lena]=0; for(int i=lena-1;i>=0;i--) hha[i] = hha[i+1]*KEY+a[i]-‘a‘; hhb[lenb]=0; for(int i=lenb-1;i>=0;i--) hhb[i] = hhb[i+1]*KEY+b[i]-‘a‘; int ans=-1; for(int i=0;i<=lena-lenb;i++) { int cnt=0; cnt += lcp(i+cnt,cnt); if(cnt>=lenb) { ans=i; break; } cnt++; if(cnt>=lenb) { ans=i; break; } cnt += lcp(i+cnt,cnt); if(cnt>=lenb) { ans=i; break; } cnt++; if(cnt>=lenb) { ans=i; break; } cnt += lcp(i+cnt,cnt); if(cnt>=lenb) { ans=i; break; } } printf("Case #%d: ",tt++); printf("%d\n",ans); //printf("%d %s\n",ans,a+ans); } return 0; }