中文分词工具Jieba

源码下载的地址:https://github.com/fxsjy/jieba

演示地址:http://jiebademo.ap01.aws.af.cm/

特点

1,支持三种分词模式:

a,精确模式,试图将句子最精确地切开,适合文本分析;

b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

c,搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

2,支持繁体分词

3,支持自定义词典

安装

1,Python 2.x 下的安装

全自动安装 :easy_install jieba 或者 pip install jieba

半自动安装 :先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install

手动安装 :将jieba目录放置于当前目录或者site-packages目录

通过import jieba 来引用

2,Python 3.x 下的安装

目前master分支是只支持Python2.x 的

Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k

git clone https://github.com/fxsjy/jieba.git

git checkout jieba3k

python setup.py install

算法实现:

基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)

采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

功能

功能 1):分词

jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式

jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list

代码示例( 分词 )

#encoding=utf-8

import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)

print "Full Mode:", "/ ".join(seg_list)  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)

print "Default Mode:", "/ ".join(seg_list)  # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式

print ", ".join(seg_list)

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式

print ", ".join(seg_list)

Output:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

功能 2) :添加自定义词典

开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率

用法:

jieba.load_userdict(file_name) # file_name为自定义词典的路径

词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开

范例:

自定义词典:

云计算 5

李小福 2 nr

创新办 3 i

easy_install 3 eng

好用 300

韩玉赏鉴 3 nz

用法示例:

#encoding=utf-8

import sys

sys.path.append("../")

import jieba

jieba.load_userdict("userdict.txt")

import jieba.posseg as pseg

test_sent = "李小福是创新办主任也是云计算方面的专家;"

test_sent += "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类型"

words = jieba.cut(test_sent)

for w in words:

print w

result = pseg.cut(test_sent)

for w in result:

print w.word, "/", w.flag, ", ",

print "\n========"

terms = jieba.cut(‘easy_install is great‘)

for t in terms:

print t

print ‘-------------------------‘

terms = jieba.cut(‘python 的正则表达式是好用的‘)

for t in terms:

print t

之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /

加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /

"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

功能 3) :关键词提取

jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

说明

setence为待提取的文本

topK为返回几个TF/IDF权重最大的关键词,默认值为20

代码示例 (关键词提取)

import sys

sys.path.append(‘../‘)

import jieba

import jieba.analyse

from optparse import OptionParser

USAGE = "usage: python extract_tags.py [file name] -k [top k]"

parser = OptionParser(USAGE)

parser.add_option("-k", dest="topK")

opt, args = parser.parse_args()

if len(args) < 1:

print USAGE

sys.exit(1)

file_name = args[0]

if opt.topK is None:

topK = 10

else:

topK = int(opt.topK)

content = open(file_name, ‘rb‘).read()

tags = jieba.analyse.extract_tags(content, topK=topK)

print ",".join(tags)

功能 4) : 词性标注

标注句子分词后每个词的词性,采用和ictclas兼容的标记法

用法示例

>>> import jieba.posseg as pseg

>>> words = pseg.cut("我爱北京天安门")

>>> for w in words:

...    print w.word, w.flag

...

我 r

爱 v

北京 ns

天安门 ns

功能 5) : 并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升

基于python自带的multiprocessing模块,目前暂不支持windows

用法:

jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数

jieba.disable_parallel() # 关闭并行分词模式

例子:

import urllib2

import sys,time

import sys

sys.path.append("../../")

import jieba

jieba.enable_parallel(4)

url = sys.argv[1]

content = open(url,"rb").read()

t1 = time.time()

words = list(jieba.cut(content))

t2 = time.time()

tm_cost = t2-t1

log_f = open("1.log","wb")

for w in words:

print >> log_f, w.encode("utf-8"), "/" ,

print ‘speed‘ , len(content)/tm_cost, " bytes/second"

实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

其他词典

占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary(‘data/dict.txt.big‘)

时间: 2024-10-10 17:30:13

中文分词工具Jieba的相关文章

中文分词工具——jieba

汉字是智慧和想象力的宝库. --索尼公司创始人井深大 简介 在英语中,单词就是"词"的表达,一个句子是由空格来分隔的,而在汉语中,词以字为基本单位,但是一篇文章的表达是以词来划分的,汉语句子对词构成边界方面很难界定.例如:南京市长江大桥,可以分词为:"南京市/长江/大桥"和"南京市长/江大桥",这个是人为判断的,机器很难界定.在此介绍中文分词工具jieba,其特点为: 社区活跃.目前github上有19670的star数目 功能丰富,支持关键词提

2 中文分词工具 jieba 和 HanLP

前言 中文分词有很多种,常见的比如有中科院计算所 NLPIR.哈工大 LTP.清华大学 THULAC .斯坦福分词器.Hanlp 分词器.jieba 分词.IKAnalyzer 等.这里针对 jieba 和 HanLP 分别介绍不同场景下的中文分词应用. jieba 分词 jieba 安装 (1)Python 2.x 下 jieba 的三种安装方式,如下: 全自动安装:执行命令 easy_install jieba 或者 pip install jieba / pip3 install jieb

中文分词工具jieba中的词性类型

jieba为自然语言语言中常用工具包,jieba具有对分词的词性进行标注的功能,词性类别如下: Ag 形语素 形容词性语素.形容词代码为 a,语素代码g前面置以A. a 形容词 取英语形容词 adjective的第1个字母. ad 副形词 直接作状语的形容词.形容词代码 a和副词代码d并在一起. an 名形词 具有名词功能的形容词.形容词代码 a和名词代码n并在一起. b 区别词 取汉字“别”的声母. c 连词 取英语连词 conjunction的第1个字母. dg 副语素 副词性语素.副词代码

中文分词工具简介与安装教程(jieba、nlpir、hanlp、pkuseg、foolnltk、snownlp、thulac)

2.1 jieba 2.1.1 jieba简介 Jieba中文含义结巴,jieba库是目前做的最好的python分词组件.首先它的安装十分便捷,只需要使用pip安装:其次,它不需要另外下载其它的数据包,在这一点上它比其余五款分词工具都要便捷.另外,jieba库支持的文本编码方式为utf-8. Jieba库包含许多功能,如分词.词性标注.自定义词典.关键词提取.基于jieba的关键词提取有两种常用算法,一是TF-IDF算法:二是TextRank算法.基于jieba库的分词,包含三种分词模式: 精准

NLP(十三)中文分词工具的使用尝试

??本文将对三种中文分词工具进行使用尝试,这三种工具分别为哈工大的LTP,结巴分词以及北大的pkuseg. ??首先我们先准备好环境,即需要安装三个模块:pyltp, jieba, pkuseg以及LTP的分词模型文件cws.model.在用户字典中添加以下5个词语: 经 少安 贺凤英 F-35战斗机 埃达尔·阿勒坎 ??测试的Python代码如下: # -*- coding: utf-8 -*- import os import jieba import pkuseg from pyltp i

java读取中文分词工具(三)

import java.io.EOFException; import java.io.File; import java.io.FileNotFoundException; import java.io.IOException; import java.io.RandomAccessFile; import java.util.ArrayList; /* * 文件格式:已分词的文本,词语之间用空格,换行等空白符分割. * 到了文件末尾就结束 * 适合读取一行很大的文本,因为这里的缓冲不是一行,

java读取中文分词工具(四)

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.RandomAccessFile; import java.io.Serializable; import java.util.ArrayList; import java.ut

java读取中文分词工具(2)

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; /* * 文件格式:已分词的中文文本,每个词语空格分割,每行一个段落. * 这个类适

基于开源中文分词工具pkuseg-python,我用张小龙的3万字演讲做了测试

做过搜索的同学都知道,分词的好坏直接决定了搜索的质量,在英文中分词比中文要简单,因为英文是一个个单词通过空格来划分每个词的,而中文都一个个句子,单独一个汉字没有任何意义,必须联系前后文字才能正确表达它的意思. 因此,中文分词技术一直是nlp领域中的一大挑战.Python 中有个比较著名的分词库是结巴分词,从易用性来说对用户是非常友好的,但是准确度不怎么好.这几天发现另外一个库,pkuseg-python,看起来应该是北大的某个学生团队弄出来的,因为这方面没看到过多的介绍,pkuseg-pytho