Series 1
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 921 Accepted Submission(s): 342
Problem Description
Let A be an integral series {A1, A2, . . . , An}.
The zero-order series of A is A itself.
The first-order series of A is {B1, B2, . . . , Bn-1},where Bi = Ai+1 - Ai.
The ith-order series of A is the first-order series of its (i - 1)th-order series (2<=i<=n - 1).
Obviously, the (n - 1)th-order series of A is a single integer. Given A, figure out that integer.
Input
The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
For each test case:
The first line contains a single integer n(1<=n<=3000), which denotes the length of series A.
The second line consists of n integers, describing A1, A2, . . . , An. (0<=Ai<=105)
Output
For each test case, output the required integer in a line.
Sample Input
2 3 1 2 3 4 1 5 7 2
Sample Output
0 -5
Author
BUPT
系数是杨辉三角并且是高精度,用java处理。
//515MS 9976K import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner cin=new Scanner(System.in); int t; t=cin.nextInt(); for(int cas=1;cas<=t;cas++){ BigInteger ans=BigInteger.valueOf(0); int n; n=cin.nextInt(); BigInteger yanghui[]=new BigInteger[n]; BigInteger s[]=new BigInteger[n+2]; for(int i=0;i<n;i++) s[i]=cin.nextBigInteger(); if (n == 1) { System.out.println(s[0]); continue; } yanghui[0]=BigInteger.valueOf(1); for(int i=1;i<n;i++){ BigInteger x1=BigInteger.valueOf(i); BigInteger x2=BigInteger.valueOf(n-i); yanghui[i]=yanghui[i-1].multiply(x2).divide(x1); } boolean flag=true; for(int i=n-1;i>=0;i--){ if(flag){ans=ans.add(yanghui[i].multiply(s[i]));flag=false;} else {ans=ans.subtract(yanghui[i].multiply(s[i]));flag=true;} } System.out.println(ans); } } }
HDU 4927 Series 1 杨辉三角形