Spark-class启动脚本解读

#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# NOTE: Any changes to this file must be reflected in SparkSubmitDriverBootstrapper.scala!

#判断是否是cygwin环境
cygwin=false
case "`uname`" in
    CYGWIN*) cygwin=true;;
esac

SCALA_VERSION=2.10

# Figure out where Spark is installed
#进去到SPark的安装目录
FWDIR="$(cd `dirname $0`/..; pwd)"

# Export this as SPARK_HOME
# 生成SPARK_HOME环境变量
export SPARK_HOME="$FWDIR"

#执行load-spark-env.sh脚本,主要功能为:
#执行spark-env.sh
#spark-env.sh的主要内容为一些程序过程中的配置和路径的环境变量
. $FWDIR/bin/load-spark-env.sh

#如果没有参数的话执行以下内容
if [ -z "$1" ]; then
  echo "Usage: spark-class <class> [<args>]" 1>&2
  exit 1
fi

#如果SPARK_MEM不为null
if [ -n "$SPARK_MEM" ]; then
  echo -e "Warning: SPARK_MEM is deprecated, please use a more specific config option" 1>&2
  echo -e "(e.g., spark.executor.memory or spark.driver.memory)." 1>&2
fi

# Use SPARK_MEM or 512m as the default memory, to be overridden by specific options
#默认SPARK_MEM的大小为512M
DEFAULT_MEM=${SPARK_MEM:-512m}

SPARK_DAEMON_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS -Dspark.akka.logLifecycleEvents=true"

#注意SPARK_DRIVER_MEMORY从spark-env.sh的配置文件中读取SPARK_DRIVER_MEMORY参数

# Add java opts and memory settings for master, worker, history server, executors, and repl.
case "$1" in
  # Master, Worker, and HistoryServer use SPARK_DAEMON_JAVA_OPTS (and specific opts) + SPARK_DAEMON_MEMORY.
  ‘org.apache.spark.deploy.master.Master‘)
    OUR_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS $SPARK_MASTER_OPTS"
    OUR_JAVA_MEM=${SPARK_DAEMON_MEMORY:-$DEFAULT_MEM}
    ;;
  ‘org.apache.spark.deploy.worker.Worker‘)
    OUR_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS $SPARK_WORKER_OPTS"
    OUR_JAVA_MEM=${SPARK_DAEMON_MEMORY:-$DEFAULT_MEM}
    ;;
  ‘org.apache.spark.deploy.history.HistoryServer‘)
    OUR_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS $SPARK_HISTORY_OPTS"
    OUR_JAVA_MEM=${SPARK_DAEMON_MEMORY:-$DEFAULT_MEM}
    ;;

  # Executors use SPARK_JAVA_OPTS + SPARK_EXECUTOR_MEMORY.
  ‘org.apache.spark.executor.CoarseGrainedExecutorBackend‘)
    OUR_JAVA_OPTS="$SPARK_JAVA_OPTS $SPARK_EXECUTOR_OPTS"
    OUR_JAVA_MEM=${SPARK_EXECUTOR_MEMORY:-$DEFAULT_MEM}
    ;;
  ‘org.apache.spark.executor.MesosExecutorBackend‘)
    OUR_JAVA_OPTS="$SPARK_JAVA_OPTS $SPARK_EXECUTOR_OPTS"
    OUR_JAVA_MEM=${SPARK_EXECUTOR_MEMORY:-$DEFAULT_MEM}
    ;;

  # Spark submit uses SPARK_JAVA_OPTS + SPARK_SUBMIT_OPTS +
  # SPARK_DRIVER_MEMORY + SPARK_SUBMIT_DRIVER_MEMORY.
  ‘org.apache.spark.deploy.SparkSubmit‘)
    OUR_JAVA_OPTS="$SPARK_JAVA_OPTS $SPARK_SUBMIT_OPTS"
    OUR_JAVA_MEM=${SPARK_DRIVER_MEMORY:-$DEFAULT_MEM}
    if [ -n "$SPARK_SUBMIT_LIBRARY_PATH" ]; then
      OUR_JAVA_OPTS="$OUR_JAVA_OPTS -Djava.library.path=$SPARK_SUBMIT_LIBRARY_PATH"
    fi
    if [ -n "$SPARK_SUBMIT_DRIVER_MEMORY" ]; then
      OUR_JAVA_MEM="$SPARK_SUBMIT_DRIVER_MEMORY"
    fi
    ;;

  *)
    OUR_JAVA_OPTS="$SPARK_JAVA_OPTS"
    OUR_JAVA_MEM=${SPARK_DRIVER_MEMORY:-$DEFAULT_MEM}
    ;;
esac

#找到java的安装目录

# Find the java binary
if [ -n "${JAVA_HOME}" ]; then
  RUNNER="${JAVA_HOME}/bin/java"
else
  if [ `command -v java` ]; then
    RUNNER="java"
  else
    echo "JAVA_HOME is not set" >&2
    exit 1
  fi
fi

# Set JAVA_OPTS to be able to load native libraries and to set heap size
JAVA_OPTS="-XX:MaxPermSize=128m $OUR_JAVA_OPTS"
JAVA_OPTS="$JAVA_OPTS -Xms$OUR_JAVA_MEM -Xmx$OUR_JAVA_MEM"

# Load extra JAVA_OPTS from conf/java-opts, if it exists
if [ -e "$FWDIR/conf/java-opts" ] ; then
  JAVA_OPTS="$JAVA_OPTS `cat $FWDIR/conf/java-opts`"
fi

# Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in CommandUtils.scala!

TOOLS_DIR="$FWDIR"/tools

SPARK_TOOLS_JAR=""
if [ -e "$TOOLS_DIR"/target/scala-$SCALA_VERSION/spark-tools*[0-9Tg].jar ]; then
  # Use the JAR from the SBT build
  export SPARK_TOOLS_JAR=`ls "$TOOLS_DIR"/target/scala-$SCALA_VERSION/spark-tools*[0-9Tg].jar`
fi
if [ -e "$TOOLS_DIR"/target/spark-tools*[0-9Tg].jar ]; then
  # Use the JAR from the Maven build
  # TODO: this also needs to become an assembly!
  export SPARK_TOOLS_JAR=`ls "$TOOLS_DIR"/target/spark-tools*[0-9Tg].jar`
fi

# Compute classpath using external script
classpath_output=$($FWDIR/bin/compute-classpath.sh)
if [[ "$?" != "0" ]]; then
  echo "$classpath_output"
  exit 1
else
  CLASSPATH=$classpath_output
fi

if [[ "$1" =~ org.apache.spark.tools.* ]]; then
  if test -z "$SPARK_TOOLS_JAR"; then
    echo "Failed to find Spark Tools Jar in $FWDIR/tools/target/scala-$SCALA_VERSION/" 1>&2
    echo "You need to build spark before running $1." 1>&2
    exit 1
  fi
  CLASSPATH="$CLASSPATH:$SPARK_TOOLS_JAR"
fi

if $cygwin; then
  CLASSPATH=`cygpath -wp $CLASSPATH`
  if [ "$1" == "org.apache.spark.tools.JavaAPICompletenessChecker" ]; then
    export SPARK_TOOLS_JAR=`cygpath -w $SPARK_TOOLS_JAR`
  fi
fi
export CLASSPATH

# In Spark submit client mode, the driver is launched in the same JVM as Spark submit itself.
# Here we must parse the properties file for relevant "spark.driver.*" configs before launching
# the driver JVM itself. Instead of handling this complexity in Bash, we launch a separate JVM
# to prepare the launch environment of this driver JVM.

# 最终调用org.apache.spark.deploy.SparkSubmit类

if [ -n "$SPARK_SUBMIT_BOOTSTRAP_DRIVER" ]; then
  # This is used only if the properties file actually contains these special configs
  # Export the environment variables needed by SparkSubmitDriverBootstrapper
  export RUNNER
  export CLASSPATH
  export JAVA_OPTS
  export OUR_JAVA_MEM
  export SPARK_CLASS=1
  shift # Ignore main class (org.apache.spark.deploy.SparkSubmit) and use our own
  exec "$RUNNER" org.apache.spark.deploy.SparkSubmitDriverBootstrapper "[email protected]"
else
  # Note: The format of this command is closely echoed in SparkSubmitDriverBootstrapper.scala
  if [ -n "$SPARK_PRINT_LAUNCH_COMMAND" ]; then
    echo -n "Spark Command: " 1>&2
    echo "$RUNNER"    #E:\Program Files\Java\jdk1.7.0_79/bin/java
    echo "$CLASSPATH" #E:\cygwin64\home\hadoop2\hive\lib\mysql-connector-java-5.1.21-bin.jar;E:\cygwin64\home\hadoop2\hive\conf\hive-site.xml;E:\cygwin64\home\hadoop2\spark-1.1.0-bin-hadoop2.4\lib\datanucleus-core-3.2.2.jar;E:\cygwin64\home\hadoop2\spark-1.1.0-bin-hadoop2.4\lib\datanucleus-api-jdo-3.2.1.jar;E:\cygwin64\home\hadoop2\spark-1.1.0-bin-hadoop2.4\lib\datanucleus-rdbms-3.2.1.jar;.;E:\cygwin64\usr\local\spark-1.1.0-bin-hadoop2.4\conf;E:\cygwin64\usr\local\spark-1.1.0-bin-hadoop2.4\lib\spark-assembly-1.1.0-hadoop2.4.0.jar;E:\cygwin64\home\hadoop2\hadoop-2.5.2\etc\hadoop    echo $JAVA_OPTS   #-XX:MaxPermSize=512m -Djline.terminal=unix -Xms2048M -Xmx2048M
    echo "[email protected]"         #org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main spark-shell
    echo "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "[email protected]" 1>&2
    echo -e "========================================\n" 1>&2
  fi
  exec "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "[email protected]"
fi

用Client模式跑一下:

执行一个WordCount:

时间: 2024-10-25 17:15:41

Spark-class启动脚本解读的相关文章

hadoop启动脚本解读

本文以start-dfs.sh为例向下延展解释各脚本的作用和相互关系,对于start-yarn.sh同理可证.下图解释了各个脚本的作用: 注意:slaves.sh在通过SSH推送命令时,会首先读取$HADOOP_SLAVE_NAMES这个数组中的机器列表作为推送目标,当这个数组为空时才使用slaves文件中给出的机器列表.实际上slaves.sh这个脚本的命名很不好,它会给人一种误导,这个脚本实际上是一个向目标机器列表推送命令的util脚本,而不是只向slave节点通信的!这一点在start-d

Spark-shell启动脚本解读

#!/usr/bin/env bash # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses

Spark学习之路 (十五)SparkCore的源码解读(一)启动脚本[转]

启动脚本分析 独立部署模式下,主要由master和slaves组成,master可以利用zk实现高可用性,其driver,work,app等信息可以持久化到zk上:slaves由一台至多台主机构成.Driver通过向Master申请资源获取运行环境. 启动master和slaves主要是执行/usr/dahua/spark/sbin目录下的start-master.sh和start-slaves.sh,或者执行 start-all.sh,其中star-all.sh本质上就是调用start-mas

ELK相关启动脚本

elasticsearch启动脚本 #!/bin/bash # Description:Elasticsearch ORS SERVER ES_HOME=/usr/local/elasticsearch-5.0.0 PID=$(jps | grep Elasticsearch | awk '{print $1}') ES_STOP=$ES_HOME/bin/shutdown.sh ES_START=$ES_HOME/bin/startup.sh #Necessary environment va

启动脚本_《UNIX/LINUX 系统管理技术手册 第四版》

1.init 是系统引导起来之后第一个运行的进程,是系统最重要的守护进程,进程号始终为1. 2.随着机器的引导,init从运行级0开始,一级一级往上运行到/etc/inittab中所设置的默认运行级.当机器关闭时,将以相反顺序执行同样的处理过程. 3.启动脚本的主要文件位于/etc/init.d这个目录下面,每个脚本负责一个守护进程或者系统的某个特定方面. 4.为了实现不同运行级别下需要运行那些脚本(并带什么参数,K开头停止.S开头启动),当系统进入到一个新的运行级别时,不是直接在init.d目

real server 的一个启动脚本例子

real server 的vip 启动脚本 #!/bin/bash #chkconfig: 2345 50 50 #description: real server init script VIP=192.168.80.80 case $1 in "start") echo "starting real server ..." ifconfig lo:0 $VIP broadcast $VIP netmask 255.255.255.255 up echo &quo

mongodb安装脚本/启动脚本/配置文件

安装脚本 #!/bin/bash  #author: QingFeng #qq: 530035210 #blog: http://my.oschina.net/pwd/blog  #自动安装mongodb和初始化配置 #缺省的配置如下   logdir=/data/log/shell          #日志路径 log=$logdir/shell.log            #日志文件  is_font=1                #终端是否打印日志: 1打印 0不打印  is_log

第5章3节《MonkeyRunner源码剖析》Monkey原理分析-启动运行: 启动脚本(原创)

天地会珠海分舵注:本来这一系列是准备出一本书的,详情请见早前博文"寻求合作伙伴编写<深入理解 MonkeyRunner>书籍".但因为诸多原因,没有如愿.所以这里把草稿分享出来,所以错误在所难免.有需要的就参考下吧,转发的话还请保留每篇文章结尾的出处等信息. 本节我们先看下Monkey是怎么启动起来的.在今后分析到MonkeyRunner的原理的时候我们会看到客户端是通过ADB往Android目标测试机器发送一个"monkey -port 12345"的

linux shell 之尝试编写 企业级 启动脚本

企业Shell面试题10:开发企业级MySQL启动脚本 说明: MySQL启动命令为: 1 /bin/sh mysqld_safe --pid-file=$mysqld_pid_file_path 2>&1 >/dev/null & 停止命令逻辑脚本为: 1 2 3 4 5 6 mysqld_pid=`cat "$mysqld_pid_file_path"` if (kill -0 $mysqld_pid 2>/dev/null)   then