【博弈论】取火柴游戏

取火柴游戏

时间限制: 1 Sec  内存限制: 128 MB

题目描述

输入k及k个整数n1,n2,…,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni;接着便是你和计算机取火柴棒的对弈游戏。取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不允许跨堆取,也不允许不取。

谁取走最后一根火柴为胜利者。

例如:k=2,n1=n2=2,A代表你,P代表计算机,若决定A先取:

A:(2,2)→(1,2)    {从一堆中取一根}

P:(1,2)→(1,1)    {从另一堆中取一根}

A:(1,1)→(1,0)

P:(1,0)→ (0,0)    {P胜利}

如果决定A后取:

P:(2,2)→(2,0)

A:(2,0)→ 0,0)    {A胜利}

又如k=3,n1=1,n2=2,n3=3,A决定后取:

P:(1,2,3)→(0,2,3)

A:(0,2,3)→(0,2,2)

A已将游戏归结为(2,2)的情况,不管P如何取A都必胜。

编一个程序,在给出初始状态之后,判断是先取必胜还是先取必败,如果是先取必胜,请输

出第一次该如何取。如果是先取必败,则输出“lose”。

输入

输入k及k个整数n1,n2,…,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni;

输出

判断是先取必胜还是先取必败,如果是先取必胜,请输出第一次该如何取。如果是先取必败,则输出“lose”。

样例输入

3
3 6 9

样例输出

4 3
3 6 5 

输出确实很坑人。。。
 1 #include <iostream>
 2
 3 using namespace std;
 4
 5 int n;
 6 int a[1111];
 7 int s,k,maxx;
 8
 9 int main()
10 {
11     cin>>n;
12     s=k=maxx=0;
13     for(int i=0;i<n;i++)
14     {
15         cin>>a[i];
16         s=s^a[i];
17         if(i<n-1)
18             k=k^a[i];
19         if(a[maxx]<a[i])
20             maxx=i;
21     }
22     if(s==0)
23         cout<<"lose"<<endl;
24     else
25     {
26         cout<<a[maxx]-k<<" "<<maxx+1<<endl;
27         a[maxx]=k;
28         for(int i=0;i<n-1;i++)
29             cout<<a[i]<<" ";
30         cout<<a[n-1];
31     }
32     return 0;
33 }
时间: 2024-09-30 15:37:41

【博弈论】取火柴游戏的相关文章

【贪心】取火柴游戏

[贪心]取火柴游戏 题目描述 输入k及k个整数n1,n2,…,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni:接着便是你和计算机取火柴棒的对弈游戏.取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不允许跨堆取,也不允许不取. 谁取走最后一根火柴为胜利者. 例如:k=2,n1=n2=2,A代表你,P代表计算机,若决定A先取: A:(2,2)→(1,2)    {从一堆中取一根} P:(1,2)→(1,1)    {从另一堆中取一根} A:(1,1)→(1,0) P:(1,0)

洛谷P1247 取火柴游戏 数学题 博弈论

这题就是NIM取石子游戏,但是NIM取石子方案并不是单一的,而是有多种方案的,现在让我们求字典序最小的方案,其实还是简单的,作为先手,如果是必胜局面,那我们肯定第一步把所有子异或和变为零 ,这样对于对方,这就是一个必败局面了 2.那我们来考虑怎么把局面变成必败局面呢,换句话说,怎么判断这一堆取不取呢, 假设a[ i ]不取他们的异或值为 y ,那么如果我们把a[ i ]变成 y 那么 y^y=0 就必胜了那就只要判断 if a[ i ]>=y 就可知在这一位上改变可不可行了,要字典序最小那就i从

P1247 取火柴游戏

题目描述 输入k及k个整数n1,n2,…,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni:接着便是你和计算机取火柴棒的对弈游戏.取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不允许跨堆取,也不允许不取. 谁取走最后一根火柴为胜利者. 例如:k=2,n1=n2=2,A代表你,P代表计算机,若决定A先取: A:(2,2)→(1,2) {从一堆中取一根} P:(1,2)→(1,1) {从另一堆中取一根} A:(1,1)→(1,0) P:(1,0)→ (0,0) {P胜利} 如果

P1247 取火柴游戏 (奇异局势)

题目链接 题目描述 输入k及k个整数n1,n2,…,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni:接着便是你和计算机取火柴棒的对弈游戏.取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不允许跨堆取,也不允许不取. 谁取走最后一根火柴为胜利者. 编一个程序,在给出初始状态之后,判断是先取必胜还是先取必败,如果是先取必胜,请输出第一次该如何取.如果是先取必败,则输出“lose”. 输入格式 第一行,一个正整数k 第二行,k个整数n1,n2,…,nk 输出格式 如果是先取必胜,

P1247 取火柴游戏(异或理论)

https://www.luogu.com.cn/problem/P1247 #include <bits/stdc++.h> using namespace std; #define int long long const int maxn = 5e5 + 5; int n; int a[maxn]; signed main(){ //freopen("in","r",stdin); ios::sync_with_stdio(0); cin >&

取火柴-博弈论

取火柴 (10分)C时间限制:3000 毫秒 | C内存限制:3000 Kb题目内容: 有n个火柴棍,两个游戏玩家a和b轮流取,规则是第一次取的人最少取1根,最多取n-1根,随后每人最多只能取对方上一次取的数目 的2倍,最少取1根.谁取到最后一根为胜者.试问先取的人是赢还是输. 输入描述n输出描述1表示胜,0表示输输入样例3输出样例0 解析:说白了,就是每个人只能取1或者2.(双方都不想因为自己而让对方的选择余地变大) #include<iostream> using namespace st

洛谷1288 取数游戏II 博弈论

洛谷1288 取数游戏II 博弈论 最优策略 一定是你一步把值走完,然后我再走完,这样不给别人留后路 然后这样走 只要自己从左走 或者从右走其中有一个有奇数步可走,则说明是必胜局 如果都是只能走偶数步的,就是必败局 . 另一个题解 首先,对于一条链a1,a2,a3,a4......0 如果是偶数条边,那么现手一定赢,因为他每一次都只用把后面一条取完,例如 5 4 3 6 5 0 先手取完5,后手没法回到前一个位置,而无论接下来后手去多少,先手继续取完3,再然后取完5,后手没办法再去,先手赢.就这

poj 1067||hdu 1527 取石子游戏(博弈论,Wythoff Game)

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37893   Accepted: 12684 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者

HDU 2516 取石子游戏 (博弈论)

取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"Second win". 先取者胜输出"First win".