(一)树状数组的概念
如果给定一个数组,要你求里面所有数的和,一般都会想到累加。但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了。所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多。下面就讲一下什么是树状数组:
一般讲到树状数组都会少不了下面这个图:
下面来分析一下上面那个图看能得出什么规律:
据图可知:c1=a1,c2=a1+a2,c3=a3,c4=a1+a2+a3+a4,c5=a5,c6=a5+a6,c7=a7,c8=a1+a2+a3+a4+a5+a6+a7+a8,c9=a9,c10=a9+a10,c11=a11........c16=a1+a2+a3+a4+a5+.......+a16。
分析上面的几组式子可知,当 i 为奇数时,ci=ai ;当 i 为偶数时,就要看 i 的因子中最多有二的多少次幂,例如,6 的因子中有 2 的一次幂,等于 2 ,所以 c6=a5+a6(由六向前数两个数的和),4 的因子中有 2 的两次幂,等于 4 ,所以 c4=a1+a2+a3+a4(由四向前数四个数的和)。
(一)有公式:cn=a(n-a^k+1)+.........+an(其中 k 为 n 的二进制表示中从右往左数的 0 的个数)。
那么,如何求 a^k 呢?求法如下:
1 int lowbit(int x) //取x的最低位1,比如4,则返回4,如5,则返回1 2 { 3 return x&(-x); 4 }
lowbit()的返回值就是 2^k 次方的值。
求出来 2^k 之后,数组 c 的值就都出来了,接下来我们要求数组中所有元素的和。
(二)求数组的和的算法如下:
(1)首先,令sum=0,转向第二步;
(2)接下来判断,如果 n>0 的话,就令sum=sum+cn转向第三步,否则的话,终止算法,返回 sum 的值;
(3)n=n - lowbit(n)(将n的二进制表示的最后一个零删掉),回第二步。
代码实现:
1 int Sum(int i) //求前i项的和 2 { 3 int s = 0; 4 //将前i项分段 5 while(i > 0) 6 { 7 s += sum[i]; 8 i -= lowbit(i); //去掉i的二进制最后一个 9 } 10 return s; 11 }
(三)当数组中的元素有变更时,树状数组就发挥它的优势了,算法如下(修改为给某个节点 i 加上 x ):
(1)当 i<=n 时,执行下一步;否则的话,算法结束;
(2)ci=ci+x ,i=i+lowbit(i)(在 i 的二进制表示的最后加零),返回第一步。
代码实现:
1 void update(int i, int val) //将第i个元素增加val 2 { 3 //i的祖先都要增加val 4 while(i <= n) 5 { 6 sum[i] += val; 7 i += lowbit(i); //将i的二进制未位补为得到其祖先 8 } 9 }
(二)树状数组的应用
以下数组下标均默认从1开始
应用一
假如给你一个数组a[ ] = {2,5,3,4,1},求b[i],b[i] 表示在a[1],a[2]...a[i-1]中(即位置i的左边)小于等于a[i]的数的个数。对此例b[] = {0,1,1,2,0}。 那么该如何去求得b[i]呢?
解法:假如要得到b[4]的值,对于a[4] = 4. 我们 只要得到在a[1],a[2],a[3] 中出现小于等于4的个数,即1,2,3,4的个数,此例即为2. a[1] = 2 < a[4], a[3] = 3 < a[4]. 所以b[4] = 2;其他的以此类推. 求b[i]的值,需要得到在a[1],a[2]....a[i-1]中出现小于等于a[i]的个数,即1,2...a[i]的个数. 相当于求前a[i]项的和,可用到树状数组.
具体操作
for(int i=1; i<=n; i++)
{
b[i] = getSum(a[i]); //求前a[i]项的和
update(a[i],1); //第a[i]个元素+1
}
应用二
假如给你一个数组a[ ] = {2,5,3,4,1},求b[i],b[i] 表示在a[1],a[2]...a[i-1]中(即位置i的左边)大于等于a[i]的数的个数。对此例b[] = {0,0,1,1,4}。 那么该如何去求得b[i]呢?
解法1: 只需要先将数组a倒过来编号,即将a转换为,a[] ={4,1,3,2,5}.此时具体的操作如应用一
以下数组下标均默认从1开始
应用一
假如给你一个数组a[ ] = {2,5,3,4,1},求b[i],b[i] 表示在a[1],a[2]...a[i-1]中(即位置i的左边)小于等于a[i]的数的个数。对此例b[] = {0,1,1,2,0}。 那么该如何去求得b[i]呢?
解法:假如要得到b[4]的值,对于a[4] = 4. 我们 只要得到在a[1],a[2],a[3] 中出现小于等于4的个数,即1,2,3,4的个数,此例即为2. a[1] = 2 < a[4], a[3] = 3 < a[4]. 所以b[4] = 2;其他的以此类推. 求b[i]的值,需要得到在a[1],a[2]....a[i-1]中出现小于等于a[i]的个数,即1,2...a[i]的个数. 相当于求前a[i]项的和,可用到树状数组.
具体操作
for(int i=1; i<=n; i++)
{
b[i] = getSum(a[i]); //求前a[i]项的和
update(a[i],1); //第a[i]个元素+1
}
应用二
假如给你一个数组a[ ] = {2,5,3,4,1},求b[i],b[i] 表示在a[1],a[2]...a[i-1]中(即位置i的左边)大于等于a[i]的数的个数。对此例b[] = {0,0,1,1,4}。 那么该如何去求得b[i]呢?
解法1: 只需要先将数组a倒过来编号,即将a转换为,a[] ={4,1,3,2,5}.此时具体的操作如应用一
解法2:改变更新路径和求和路径
1 void update(int x, int val) 2 { 3 for(int i=x; i>0; i-=lowbit(i)) 4 { 5 sum[i] += val; 6 } 7 } 8 9 int getSum(int x) 10 { 11 int s = 0; 12 for(int i=x; i<MAXN; i+=lowbit(i)) 13 { 14 s += sum[i]; 15 } 16 return s; 17 }
应用三 逆序数
假如给你一个数组a[ ] = {2,5,3,4,1},求b[i],b[i] 表示在a[i],a[i+1]...a[n]中(即位置i的右边)小于等于a[i]的数的个数。对此例b[] = {1,3,1,1,0}。 那么该如何去求得b[i]呢?
操作:应用一位置i的左边,应用三是位置i的右边。 然后只需要在应用一的基础上从后往前操作即可
1 for(int i=n; i>=1; i--) 2 3 { 4 5 b[i] = getSum(a[i]); //求前a[i]项的和 6 7 update(a[i],1); //第a[i]个元素+1 8 9 }
应用四
假如给你一个数组a[ ] = {2,5,3,4,1},求b[i],b[i] 表示在a[i],a[i+1]...a[n]中(即位置i的右边)大于等于a[i]的数的个数。对此例b[] = {3,0,1,0,0}。 那么该如何去求得b[i]呢?
操作:只需将数组a倒过来编号,即将a转化为 a[]={4,1,3,2,5} 然后利用应用三
二维树状数组
1 int lowbit(int x) 2 { 3 return x&(-x); 4 } 5 6 void update(int x, int y, int val) //将 a[x][y] 的值增加val 7 { 8 for(int i=x; i<N; i+=lowbit(i)) 9 { 10 for(int j=y; j<N; j+=lowbit(j)) 11 { 12 sum[i][j] += val; 13 } 14 } 15 } 16 17 18 int getSum(int x, int y) //求以1,1为左上角端点,学校,x,y为右下角端点的矩阵和. 19 { 20 int s = 0; 21 for(int i=x; i>0; i-=lowbit(i)) 22 { 23 for(int j=y; j>0; j-=lowbit(j)) 24 { 25 s += sum[i][j]; 26 } 27 } 28 return s; 29 }
(三)例题
基础应用
HDU 1166 敌兵布阵(树状数组)
http://www.cnblogs.com/ws5167/p/3904004.html
HDU 2689 Sort it (树状数组)
http://www.cnblogs.com/ws5167/p/3915614.html
二维树状数组
三维树状数组
树状数组求逆序数
HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )
DP+树状数组+离散化
HDU 2227 Find the nondecreasing subsequences (DP+树状数组+离散化)
BIT 树状数组 详解 及 例题,布布扣,bubuko.com