Spark 个人实战系列(1)--Spark 集群安装

前言:

  CDH4不带yarn和spark, 因此需要自己搭建spark集群. 这边简单描述spark集群的安装过程, 并讲述spark的standalone模式, 以及对相关的脚本进行简单的分析.

spark官网: http://spark.apache.org/downloads.html

*)安装和部署
  环境: 172.16.1.109~172.16.1.111三台机器(对应域名为tw-node109~tw-node111), centos6.4, 已部署cdh4
  目标是: 搭建一个spark集群(standlone), 部署目录统一为$SPARK_HOME=/root/mmxf/spark, 172.16.1.109部署Master, 172.16.1.109~172.16.1.111部署Worker节点.

预先的准备工作:
#) 在各个节点已配置/etc/hosts

172.16.1.109    tw-node109
172.16.1.110    tw-node110
172.16.1.111    tw-node111

#) 进行ssh无密钥登录设置(ssh-genkey, ssh-copy-it)

1. 下载pre-build cdh4版spark
wget http://mirrors.hust.edu.cn/apache/spark/spark-1.0.1/spark-1.0.1-bin-cdh4.tgz

2. 解压spark
tar zxvf spark-1.0.1-bin-cdh4.tgz
ln -s spark-1.0.1-bin-cdh4 spark
目录结构如下:

3. 配置属性
配置${SPARK_HOME}/conf/spark-env.sh
cd conf/
cp spark-env.sh.template spark-env.sh

SPARK_MASTER_IP=172.16.1.109
SPARK_MASTER_PORT=7077
MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}

修改${SPARK_HOME}/conf/slaves

tw-node109
tw-node110
tw-node111

4. 使用rsync做同步
SPARK_INSTALL_DIR=/root/mmxf
rsync -avh ${SPARK_INSTALL_DIR} <username>@<server>:${SPARK_INSTALL_DIR}
rsync -avh /root/mmxf/ [email protected]:/root/mmxf/
rsync -avh /root/mmxf/ [email protected]:/root/mmxf/

5. 启用服务
sbin/start-all.sh
sbin/stop-all.sh

6. 验证
jps | grep -i -e "\(Worker\|\sMaster\)"

集群UI展示

官方提供的测试用例: bin/run-example SparkPi 10

7. standlalone架构

总结:
  spark集群的搭建还是很简单的, 服务启动维护亦然.

Spark 个人实战系列(1)--Spark 集群安装,布布扣,bubuko.com

时间: 2024-10-23 20:51:27

Spark 个人实战系列(1)--Spark 集群安装的相关文章

Spark 个人实战系列(2)--Spark 服务脚本分析

前言: spark最近非常的火热, 本文不讲spark原理, 而是研究spark集群搭建和服务的脚本是如何编写的, 管中窥豹, 希望从运行脚本的角度去理解spark集群. 研究的spark为1.0.1版. spark集群采用standalone模式搭建, 其基础架构为master-slave(worker模式, 单master+多slave(worker)节点构成. 脚本目录start-all.sh 作用: 启动整个集群stop-all.sh 作用: 关闭整个集群start-master.sh

Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.编译Spark Spark可以通过SBT和Maven两种方式进行编译,再通过make-distribution.sh脚本生成部署包.SBT编译需要安装git工具,而Maven安装则需要maven工具,两种方式均需要在联网下进行,通过比较发现SBT编译速度较慢(原因有可能是1.时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 2.maven下载大文件是多线程进行,而SBT是

Spark入门实战系列--7.Spark Streaming(下)--实时流计算Spark Streaming实战

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源不断地接入流数据,为了在演示过程中更接近真实环境将定义流数据模拟器.该模拟器主要功能:通过Socket方式监听指定的端口号,当外部程序通过该端口连接并请求数据时,模拟器将定时将指定的文件数据随机获取发送给外部程序. 1.1.2 模拟器代码 import java.io.{PrintWriter} impor

Spark入门实战系列--9.Spark图计算GraphX介绍及实例

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.GraphX介绍 1.1 GraphX应用背景 Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求. 众所周知·,社交网络中人与人之间有很多关系链,例如Twitter.Facebook.微博和微信等,这些都是大数据产生的地方都需要图计算,现在的图处理基本都是分布式的图处理,而并非单机处理.Spark

Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网

Spark入门实战系列--4.Spark运行架构

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext

Spark入门实战系列--3.Spark编程模型(上)--概念及SparkShell实战

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送–Spark入门实战系列>获取 1 Spark编程模型 1.1 术语定义 应用程序(Application): 基于Spark的用户程序,包含了一个Driver Program 和集群中多个的Executor: 驱动程序(Driver Program):运行Application的main()函数并且创建SparkContext,通常用SparkContext代表Driver Program: 执行单元(Executor): 是为某

Spark入门实战系列--1.Spark及其生态圈简介

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark St

Spark入门实战系列--3.Spark编程模型(下)--IDEA搭建及实战

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送–Spark入门实战系列>获取 1 安装IntelliJ IDEA IDEA 全称 IntelliJ IDEA,是java语言开发的集成环境,IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示.重构.J2EE支持.Ant.JUnit.CVS整合.代码审查. 创新的GUI设计等方面的功能可以说是超常的.IDEA是JetBrains公司的产品,这家公司总部位于捷克共和国的首都布拉格,开发人员以严谨