Kuhn-Munkres算法

KM算法——二分图最大权匹配

我们前面学过了二分图匹配的匈牙利算法。但这种算法是针对没有权值的图来说的。

肯定有人想问,没有权值的用匈牙利算法,哪有权值的图要求最大权或最小权匹配呢??

这里就引出了我们今天的主角——KM算法。

这种算法是怎么着呢? 其实最大和最小权匹配都是一样的问题。只要会求最大匹配,如果要求最小权匹配,则将权值取相反数,再把结果取相反数,那么最小权匹配就求出来了。

但问题在这么求最大权匹配呢??

再看这个问题之前我们先来搞清楚几个概念。

one

二分图的带权匹配:二分图的带权匹配就是求出一个匹配集合,使得集合中边的权值之和最大或最小。而二分图的最佳匹配则一定为完备匹配,在此基础上,才要求匹配的边权值之和最大或最小。二分图的带权匹配与最佳匹配不等价,也不互相包含

这两个的关系比较悬乎。我的理解就是带权匹配是不考虑是不是完备,只求最大或最小权匹配。而最佳匹配则必须在完备匹配的基础上找最大或最小权匹配。

KM算法的运行要求是必须存在一个完备匹配,如果求一个最大权匹配(不一定完备)该如何办?依然很简单,把不存在的边权值赋为0。

KM算法求得的最大权匹配是边权值和最大,如果我想要边权之积最大,又怎样转化?还是不难办到,每条边权取自然对数,然后求最大和权匹配,求得的结果a再算出e^a就是最大积匹配。至于精度问题则没有更好的办法了。

two

二分图最优匹配:对于二分图的每条边都有一个权(非负),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最优完备匹配。(特殊的,当所有边的权为1时,就是最大完备匹配问题)

three。

完备匹配定义     设G=<V1,V2,E>为二部图,|V1|≤|V2|,M为G中一个最大匹配,且|M|=|V1|,则称M为V1到V2的完备匹配。

在上述定义中,若|V2|=|V1|,则完备匹配即为完美匹配,若|V1|<|V2|,则完备匹配为G中最大匹配。

KM算法

KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立,初始A[i]为与xi相连的边的最大边权,B[j]=0。KM算法的正确性基于以下定理:

设 G(V,E) 为二部图, G‘(V,E‘) 为二部图的子图。如果对于 G‘ 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G‘(V,E‘) 为 G(V,E) 的等价子图或相等子图(是G的生成子图)。

若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和(即不是最优匹配)。所以相等子图的完备匹配一定是二分图的最大权匹配。

算法流程

(1)初始化可行顶标的值

(2)用匈牙利算法寻找完备匹配

(3)若未找到完备匹配则修改可行顶标的值

(4)重复(2)(3)直到找到相等子图的完备匹配为止 

小总结:

KM算法是用来解决最大权匹配问题的,在一个二分图里,左顶点为x,右顶点为y,现对于每组左右连接连接XiYj有权wij,求一种匹配使得所有wij的和最大。

也就是说,最大匹配一定是完美匹配。(完美匹配:二分图的两边点数相同)

如果点数不相同,我们可以通过虚拟点权为0的点来时的点数相同,这也就使这个图变成了完美匹配。

代码实现:

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int MAXN = 305;
const int INF = 0x3f3f3f3f;
int love[MAXN][MAXN];   // 记录每个妹子和每个男生的好感度
int ex_girl[MAXN];      // 每个妹子的期望值
int ex_boy[MAXN];       // 每个男生的期望值
bool vis_girl[MAXN];    // 记录每一轮匹配匹配过的女生
bool vis_boy[MAXN];     // 记录每一轮匹配匹配过的男生
int match[MAXN];        // 记录每个男生匹配到的妹子 如果没有则为-1
int slack[MAXN];        // 记录每个汉子如果能被妹子倾心最少还需要多少期望值
int N;
bool dfs(int girl)
{
    vis_girl[girl] = true;
    for (int boy = 0; boy < N; ++boy) {
        if (vis_boy[boy]) continue; // 每一轮匹配 每个男生只尝试一次
        int gap = ex_girl[girl] + ex_boy[boy] - love[girl][boy];
        if (gap == 0) {  // 如果符合要求
            vis_boy[boy] = true;
            if (match[boy] == -1 || dfs( match[boy] )) {    // 找到一个没有匹配的男生 或者该男生的妹子可以找到其他人
                match[boy] = girl;
                return true;
            }
        } else {
            slack[boy] = min(slack[boy], gap);  // slack 可以理解为该男生要得到女生的倾心 还需多少期望值 取最小值 备胎的样子【捂脸
        }
    }
    return false;
}
int KM()
{
    memset(match, -1, sizeof match);    // 初始每个男生都没有匹配的女生
    memset(ex_boy, 0, sizeof ex_boy);   // 初始每个男生的期望值为0
    // 每个女生的初始期望值是与她相连的男生最大的好感度
    for (int i = 0; i < N; ++i)
    {
        ex_girl[i] = love[i][0];
        for (int j = 1; j < N; ++j)
            ex_girl[i] = max(ex_girl[i], love[i][j]);
    }
    // 尝试为每一个女生解决归宿问题
    for (int i = 0; i < N; ++i)
    {
        fill(slack, slack + N, INF);    // 因为要取最小值 初始化为无穷大
        while (1)
        {
            // 为每个女生解决归宿问题的方法是 :如果找不到就降低期望值,直到找到为止
            // 记录每轮匹配中男生女生是否被尝试匹配过
            memset(vis_girl, false, sizeof vis_girl);
            memset(vis_boy, false, sizeof vis_boy);
            if (dfs(i)) break;  // 找到归宿 退出
            // 如果不能找到 就降低期望值
            // 最小可降低的期望值
            int d = INF;
            for (int j = 0; j < N; ++j)
                if (!vis_boy[j]) d = min(d, slack[j]);
            for (int j = 0; j < N; ++j) {
                // 所有访问过的女生降低期望值
                if (vis_girl[j]) ex_girl[j] -= d;
                // 所有访问过的男生增加期望值
                if (vis_boy[j]) ex_boy[j] += d;
                // 没有访问过的boy 因为girl们的期望值降低,距离得到女生倾心又进了一步!
                else slack[j] -= d;
            }
        }
    }
    // 匹配完成 求出所有配对的好感度的和
    int res = 0;
    for (int i = 0; i < N; ++i)
        res += love[ match[i] ][i];
    return res;
}
int main()
{
    while (~scanf("%d", &N)) {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                scanf("%d", &love[i][j]);
        printf("%d\n", KM());
    }
    return 0;
}

这有一篇博客讲的挺好的。

http://www.cnblogs.com/wenruo/p/5264235.html

时间: 2024-10-10 13:47:41

Kuhn-Munkres算法的相关文章

HDU 2255 - 奔小康赚大钱

Kuhn - Munkres 算法,第一次拍各种问题,不过还是A掉了.. /* ID:esxgx1 LANG:C++ PROG:hdu2255 */ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; #define LXN 307 #define RXN 307 int

Kuhn-Munkres算法。带权二分图匹配模板 (bin神小改版本)

/****************************************************** 二分图最佳匹配 (kuhn munkras 算法 O(m*m*n)). 邻接矩阵形式 . 返回最佳匹配值,传入二分图大小m,n 邻接矩阵 map ,表示权,m1,m2返回一个最佳匹配,为匹配顶点的match值为-1, 一定注意m<=n,否则循环无法终止,最小权匹配可将全职取相反数. 初始化: for(i=0;i<MAXN;i++) for(j=0;j<MAXN;j++) mat

二分图带权匹配(推箱子问题的思考)

转载请附上原文链接: http://blog.csdn.net/u013351484/article/details/51598270 二分图带权匹配(也叫二分图最优(最佳)匹配,Kuhn-Munkres 算法) 预备知识:二分图最大匹配,二分图完备(完美)匹配 二分图带权匹配,可以把它看作集合 X 的每个顶点到集合 Y 的每个顶点均有边的二分图(设权重均为正数,则原来分别在集合 X 与集合 Y 中没边的顶点 xi,yi 就可以添加一条权重为 0 的边,即 w[xi,yi] = 0):这样的二分

HDU 2853 最大匹配&amp;KM模板

http://acm.hdu.edu.cn/showproblem.php?pid=2853 这道题初看了没有思路,一直想的用网络流如何解决 参考了潘大神牌题解才懂的 最大匹配问题KM 还需要一些技巧来解决最小变动, 做法是:把原先的邻接矩阵每个数扩大k倍(k>n) 为了突出原先的选择,也就是同等情况下优先选择原来的方案 给原来的方案对应矩阵内的数据+1 那么 最终得出的最大匹配值/k=真实的最大匹配 最终得出的最大匹配值%k=原来的方案采用了几个 这里的KM留下来做模板 /* 二分图最佳匹配

二分匹配

PS:二分图匹配这一章的内容,我认为最重要的是要弄清楚概念. 一些定义: 二分图:二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如 果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联 的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个 二分图.记为G=(A,B;E). 二分图匹配:给定一个二分图G,M为G边集的一个子集,如果M满足当中的任意两条边都不依附于同一个顶点,则称M是一个匹配. 需要强调的是:

二分图最佳匹配

1 /* 2 * this code is made by bjfu_song 3 * Problem: 1227 4 * Verdict: Accepted 5 * Submission Date: 2014-10-05 14:53:22 6 * Time: 132MS 7 * Memory: 2340KB 8 */ 9 #include<iostream> 10 #include<stdio.h> 11 #include<string.h> 12 #include&

二分图匹配相关

ACM模版 二分图匹配 匈牙利算法 邻接矩阵+DFS /* * 初始化:g[][]两边顶点的划分情况 * 建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配 * g没有边相连则初始化为0 * uN是匹配左边的顶点数,vN是匹配右边的顶点数 * 调用:res=hungary();输出最大匹配数 * 优点:适用于稠密图,DFS找增广路,实现简洁易于理解 * 时间复杂度:O(VE) */ //顶点编号从0开始的 const int MAXN = 510; int uN, vN; //

2017华为软件挑战赛总结

2017华为软件挑战赛总结 这次比赛是去年做的, 自己之前没有总结,现在才开始总结,很多东西快想不起来了,真是惭愧 赛题主要内容和目的 初赛题目和内容 给你一个流网络(边有容量和单位流量费用),已知有一些节点有流量需求(消费节点),现要选一些节点部署服务器(服务节点),给消费节点传输流量,使得在满足所有消费节点流量需求的条件下,最小化成本(服务器购买成本+线路流量费用) 服务器输出能力无上限,一个服务节点可以服务多个消费节点,一个消费节点也可以从多个服务节点获取流量 每台服务器的购买成本均相同

图的匹配问题与最大流问题(六)——匈牙利算法一种简洁实现

接着这个系列,前几个又重新写匈牙利算法时,发现了一种更为简洁的实现方式,和上一篇文章相比http://blog.csdn.net/smartxxyx/article/details/9672181, 这个算法更为简洁,也好理解.和维基百科上介绍的算法思路是一致的. 求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的.但是这个算法的时间复杂度为边数的指数级函数.因此,需要寻求一种更加高效的算法.下面介绍用增广路求最大匹配的方法(称作匈牙利算法,由数学家Harold Kuhn于1

[图论] 二分图匹配(匈牙利算法)

介绍部分转载于维基百科: 匈牙利算法是众多用于解决线性任务分配问题的算法之一,是用来解决二分图最大匹配问题的经典算法,可以在多项式时间内解决问题,由美国数学家Harold Kuhn 于1955年提出.此算法之所以被称作匈牙利算法是因为算法很大一部分是基于以前匈牙利数学家Dénes K?nig和Jen? Egerváry的工作之上创建起来的. 问题简介: 设G=(V,E)是一个无向图.如顶点集V可分区为两个互不相交的子集V1,V2之并,并且图中每条边依附的两个顶点都分属于这两个不同的子集.则称图G