在上一节我们介绍了Iteratee。它的功能是消耗从一些数据源推送过来的数据元素,不同的数据消耗方式代表了不同功能的Iteratee。所谓的数据源就是我们这节要讨论的Enumerator。Enumerator是一种数据源:它会根据下游数据消耗方(Iteratee)的具体状态主动向下推送数据元素。我们已经讨论过Iteratee的状态Step类型:
trait Step[E,+A] case class Done[+A,E](a: A, remain: Input[E]) extends Step[E,A] case class Cont[E,+A](k: Input[E] => InputStreamHandler[E,A]) extends Step[E,A] case class Error[E](msg: String, loc:Input[E]) extends Step[E,Nothing]
这其中Iteratee通过Cont状态通知Enumerator可以发送数据元素,并提供了k函数作为Enumerator的数据推送函数。Enumerator推送的数据元素,也就是Iteratee的输入Input[E],除单纯数据元素之外还代表着数据源状态:
trait Input[+E] case class EL[E](e: E) extends Input[E] case object EOF extends Input[Nothing] case object Empty extends Input[Nothing]
Enumerator通过Input[E]来通知Iteratee当前数据源状态,如:是否已经完成所有数据推送(EOF),或者当前推送了什么数据元素(El[E](e:E))。Enumerator主动向Iteratee输出数据然后返回新状态的Iteratee。我们可以从Enumerator的类型款式看得出:
trait Enumerator[E] { /** * Apply this Enumerator to an Iteratee */ def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] }
这个Future的目的主要是为了避免占用线程。实际上我们可以最终通过调用Iteratee的fold函数来实现Enumerator功能,如:
/** * Creates an enumerator which produces the one supplied * input and nothing else. This enumerator will NOT * automatically produce Input.EOF after the given input. */ def enumInput[E](e: Input[E]) = new Enumerator[E] { def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] = i.fold { case Step.Cont(k) => eagerFuture(k(e)) case _ => Future.successful(i) }(dec) }
又或者通过构建器(constructor, apply)来构建Eumerator:
/** * Create an Enumerator from a set of values * * Example: * {{{ * val enumerator: Enumerator[String] = Enumerator("kiki", "foo", "bar") * }}} */ def apply[E](in: E*): Enumerator[E] = in.length match { case 0 => Enumerator.empty case 1 => new Enumerator[E] { def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] = i.pureFoldNoEC { case Step.Cont(k) => k(Input.El(in.head)) case _ => i } } case _ => new Enumerator[E] { def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] = enumerateSeq(in, i) } } /** * Create an Enumerator from any TraversableOnce like collection of elements. * * Example of an iterator of lines of a file : * {{{ * val enumerator: Enumerator[String] = Enumerator( scala.io.Source.fromFile("myfile.txt").getLines ) * }}} */ def enumerate[E](traversable: TraversableOnce[E])(implicit ctx: scala.concurrent.ExecutionContext): Enumerator[E] = { val it = traversable.toIterator Enumerator.unfoldM[scala.collection.Iterator[E], E](it: scala.collection.Iterator[E])({ currentIt => if (currentIt.hasNext) Future[Option[(scala.collection.Iterator[E], E)]]({ val next = currentIt.next Some((currentIt -> next)) })(ctx) else Future.successful[Option[(scala.collection.Iterator[E], E)]]({ None }) })(dec) } /** * An empty enumerator */ def empty[E]: Enumerator[E] = new Enumerator[E] { def apply[A](i: Iteratee[E, A]) = Future.successful(i) } private def enumerateSeq[E, A]: (Seq[E], Iteratee[E, A]) => Future[Iteratee[E, A]] = { (l, i) => l.foldLeft(Future.successful(i))((i, e) => i.flatMap(it => it.pureFold { case Step.Cont(k) => k(Input.El(e)) case _ => it }(dec))(dec)) }
下面是个直接构建Enumerator的例子:
val enumUsers: Enumerator[String] = { Enumerator("Tiger","Hover","Grand","John") //> enumUsers : play.api.libs.iteratee.Enumerator[String] = [email protected]
在这个例子里的Enumerator就是用上面那个apply构建的。我们把enumUsers连接到costume Iteratee:
val consume = Iteratee.consume[String]() //> consume : play.api.libs.iteratee.Iteratee[String,String] = Cont(<function1>) val consumeUsers = enumUsers.apply(consume) //> consumeUsers : scala.concurrent.Future[play.api.libs.iteratee.Iteratee[String,String]] = Success([email protected])
我们是用apply(consume)来连接Enumerator和Iteratees的。apply函数的定义如下:
/** * Attaches this Enumerator to an [[play.api.libs.iteratee.Iteratee]], driving the * Iteratee to (asynchronously) consume the input. The Iteratee may enter its * [[play.api.libs.iteratee.Done]] or [[play.api.libs.iteratee.Error]] * state, or it may be left in a [[play.api.libs.iteratee.Cont]] state (allowing it * to consume more input after that sent by the enumerator). * * If the Iteratee reaches a [[play.api.libs.iteratee.Done]] state, it will * contain a computed result and the remaining (unconsumed) input. */ def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]]
这是个抽象函数。举个例实现这个apply函数的例子:
/** * Creates an enumerator which produces the one supplied * input and nothing else. This enumerator will NOT * automatically produce Input.EOF after the given input. */ def enumInput[E](e: Input[E]) = new Enumerator[E] { def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] = i.fold { case Step.Cont(k) => eagerFuture(k(e)) case _ => Future.successful(i) }(dec) }
consumeUsers: Future[Iteratee[String,String]],我们用Future的函数来显示发送数据内容:
val futPrint = consumeUsers.flatMap { i => i.run }.map(println) //> futPrint : scala.concurrent.Future[Unit] = List() Await.ready(futPrint,Duration.Inf) //> TigerHoverGrandJohn res0: demo.worksheet.enumerator.futPrint.type = Success(())
另一种更直接的方式:
val futUsers = Iteratee.flatten(consumeUsers).run.map(println) //> futUsers : scala.concurrent.Future[Unit] = List() Await.ready(futPrint,Duration.Inf) //> TigerHoverGrandJohnres1: demo.worksheet.enumerator.futPrint.type = Success(())
我们也可以使用函数符号 |>> :
val futPrintUsers = { Iteratee.flatten(enumUsers |>> consume).run.map(println) //> futPrintUsers : scala.concurrent.Future[Unit] = List() } Await.ready(futPrintUsers,Duration.Inf) //> TigerHoverGrandJohn res2: demo.worksheet.enumerator.futPrintUsers.type = Success(())
我们还可以把两个Enumerator串联起来向一个Iteratee发送数据:
val futEnums = { Iteratee.flatten { (enumUsers >>> enumColors) |>> consume }.run.map(println) //> futEnums : scala.concurrent.Future[Unit] = List() } Await.ready(futEnums,Duration.Inf) //> TigerHoverGrandJohnRedWhiteBlueYellow res3: demo.worksheet.enumerator.futEnums.type = Success(())
当然,最实用的应该是把InputStream的数据推送给一个Iteratee,如把一个文件内容发送给Iteratee:
/** * Create an enumerator from the given input stream. * * Note that this enumerator will block when it reads from the file. * * @param file The file to create the enumerator from. * @param chunkSize The size of chunks to read from the file. */ def fromFile(file: java.io.File, chunkSize: Int = 1024 * 8)(implicit ec: ExecutionContext): Enumerator[Array[Byte]] = { fromStream(new java.io.FileInputStream(file), chunkSize)(ec) } /** * Create an enumerator from the given input stream. * * This enumerator will block on reading the input stream, in the supplied ExecutionContext. Care must therefore * be taken to ensure that this isn‘t a slow stream. If using this with slow input streams, make sure the * ExecutionContext is appropriately configured to handle the blocking. * * @param input The input stream * @param chunkSize The size of chunks to read from the stream. * @param ec The ExecutionContext to execute blocking code. */ def fromStream(input: java.io.InputStream, chunkSize: Int = 1024 * 8)(implicit ec: ExecutionContext): Enumerator[Array[Byte]] = { implicit val pec = ec.prepare() generateM({ val buffer = new Array[Byte](chunkSize) val bytesRead = blocking { input.read(buffer) } val chunk = bytesRead match { case -1 => None case `chunkSize` => Some(buffer) case read => val input = new Array[Byte](read) System.arraycopy(buffer, 0, input, 0, read) Some(input) } Future.successful(chunk) })(pec).onDoneEnumerating(input.close)(pec) }
这项功能的核心函数是这个generateM,它的函数款式如下:
/** * Like [[play.api.libs.iteratee.Enumerator.repeatM]], but the callback returns an Option, which allows the stream * to be eventually terminated by returning None. * * @param e The input function. Returns a future eventually redeemed with Some value if there is input to pass, or a * future eventually redeemed with None if the end of the stream has been reached. */ def generateM[E](e: => Future[Option[E]])(implicit ec: ExecutionContext): Enumerator[E] = checkContinue0(new TreatCont0[E] { private val pec = ec.prepare() def apply[A](loop: Iteratee[E, A] => Future[Iteratee[E, A]], k: Input[E] => Iteratee[E, A]) = executeFuture(e)(pec).flatMap { case Some(e) => loop(k(Input.El(e))) case None => Future.successful(Cont(k)) }(dec) })
checkContinue0函数是这样定义的:
trait TreatCont0[E] { def apply[A](loop: Iteratee[E, A] => Future[Iteratee[E, A]], k: Input[E] => Iteratee[E, A]): Future[Iteratee[E, A]] } def checkContinue0[E](inner: TreatCont0[E]) = new Enumerator[E] { def apply[A](it: Iteratee[E, A]): Future[Iteratee[E, A]] = { def step(it: Iteratee[E, A]): Future[Iteratee[E, A]] = it.fold { case Step.Done(a, e) => Future.successful(Done(a, e)) case Step.Cont(k) => inner[A](step, k) case Step.Error(msg, e) => Future.successful(Error(msg, e)) }(dec) step(it) } }
从这段代码 case Step.Cont(k)=>inner[A](step, k)可以推断操作模式应该是当下游Iteratee在Cont状态下不断递归式调用Cont函数k向下推送数据e。我们再仔细看看generateM的函数款式;
def generateM[E](e: => Future[Option[E]])(implicit ec: ExecutionContext): Enumerator[E]
实际上刚才的操作就是重复调用这个e:=>Future[Option[E]]函数。再分析fromStream代码:
def fromStream(input: java.io.InputStream, chunkSize: Int = 1024 * 8)(implicit ec: ExecutionContext): Enumerator[Array[Byte]] = { implicit val pec = ec.prepare() generateM({ val buffer = new Array[Byte](chunkSize) val bytesRead = blocking { input.read(buffer) } val chunk = bytesRead match { case -1 => None case `chunkSize` => Some(buffer) case read => val input = new Array[Byte](read) System.arraycopy(buffer, 0, input, 0, read) Some(input) } Future.successful(chunk) })(pec).onDoneEnumerating(input.close)(pec) }
我们看到传入generateM的参数是一段代码,在Iteratee状态为Cont时会不断重复运行,也就是说这段代码会逐次从输入源中读取chunkSize个Byte。这种做法是典型的Streaming方式,避免了一次性上载所有数据。下面是一个文件读取Enumerator例子:
import java.io._ val fileEnum: Enumerator[Array[Byte]] = { Enumerator.fromFile(new File("/users/tiger/lines.txt")) } val futFile = Iteratee.flatten { fileEnum |>> consume }.run.map(println)
注意:fileEnum |>> consume并不能通过编译,这是因为fileEnum是个Enumerator[Array[Byte]],而consume是个Iteratee[String,String],Array[Byte]与String类型不符。我们可以用个Enumeratee来进行相关的转换。下面就介绍一下Enumeratee的功能。
Enumeratee其实是一种转换器。它把Enumerator产生的数据转换成能适配Iteratee的数据类型,或者Iteratee所需要的数据。比如我们想把一串字符类的数字汇总相加时,首先必须把字符转换成数字类型才能进行Iteratee的汇总操作:
val strNums = Enumerator("1","2","3") //> strNums : play.api.libs.iteratee.Enumerator[String] = [email protected] val sumIteratee: Iteratee[Int,Int] = Iteratee.fold(0)((s,i) => s+i) //> sumIteratee : play.api.libs.iteratee.Iteratee[Int,Int] = Cont(<function1>) val strToInt: Enumeratee[String,Int] = Enumeratee.map {s => s.toInt} //> strToInt : play.api.libs.iteratee.Enumeratee[String,Int] = [email protected] strNums |>> strToInt.transform(sumIteratee) //> res4: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[String,Int]] = List() strNums |>> strToInt &>> sumIteratee //> res5: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[String,Int]] = List() strNums.through(strToInt) |>> sumIteratee //> res6: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[Int,Int]] = List() val futsum = Iteratee.flatten(strNums &> strToInt |>> sumIteratee).run.map(println) //> futsum : scala.concurrent.Future[Unit] = List() Await.ready(futsum,Duration.Inf) //> 6 //| res7: demo.worksheet.enumerator.futsum.type = Success(())
在上面这个例子里Enumerator数据元素是String, Iteratee操作数据类型是Int, strToInt是个把String转换成Int的Enumeratee,我们用了几种转换方式的表达形式,结果都是一样的,等于6。我们可以用Enumerator.through或者Enumeratee.transform来连接Enumerator与Iteratee。当然,我们也可以筛选输入Iteratee的数据:
val sum2 = strNums &> Enumeratee.take(2) &> strToInt |>> sumIteratee //> sum2 : scala.concurrent.Future[play.api.libs.iteratee.Iteratee[Int,Int]] =List() val futsum2 = Iteratee.flatten(sum2).run.map(println) //> futsum2 : scala.concurrent.Future[Unit] = List() Await.ready(futsum2,Duration.Inf) //> 3 //| res8: demo.worksheet.enumerator.futsum2.type = Success(())
上面例子里的Enumeratee.take(2)就是一个数据处理的Enumeratee。
现在Enumerator+Enumeratee+Iteratee从功能上越来越像fs2了,当然了,Iteratee就是一个流工具库。我们已经选择了fs2,因为它可以支持灵活的并行运算,所以再深入讨论Iteratee就没什么意义了。