在生产环境下,如果不修改elasticsearch节点的角色信息,在高数据量,高并发的场景下集群容易出现脑裂等问题。
默认情况下,elasticsearch 集群中每个节点都有成为主节点的资格,也都存储数据,还可以提供查询服务。这些功能是由两个属性控制的。
1. node.master
2. node.data
默认情况下这两个属性的值都是true。
node.master:这个属性表示节点是否具有成为主节点的资格
注意:此属性的值为 true,并不意味着这个节点就是主节点。因为真正的主节点,是由多个具有主节点资格的节点进行选举产生的。所以,这个属性只是代表这个节点是不是具有主节点选举资格。
node.data:这个属性表示节点是否存储数据。
四种组合
1. node.master: true AND node.data: true
这种组合表示这个节点既有成为主节点的资格,又可以存储数据,这个时候如果某个节点被选举成为了真正的主节点,那么他还要存储数据,这样对于这个节点的压力就比较大了。
elasticsearch 默认是:每个节点都是这样的配置,在测试环境下这样做没问题。实际工作中建议不要这样设置,这样相当于 主节点 和 数据节点 的角色混合到一块了。
2. node.master: false AND node.data: true
这种组合表示这个节点没有成为主节点的资格,也就不参与选举,只会存储数据。这个节点我们称为 data(数据)节点。在集群中需要单独设置几个这样的节点负责存储数据。后期提供存储和查询服务
3. node.master: true AND node.data: false
这种组合表示这个节点不会存储数据,有成为主节点的资格,可以参与选举,有可能成为真正的主节点。这个节点我们称为master节点
4. node.master: false AND node.data: false
这种组合表示这个节点即不会成为主节点,也不会存储数据,这个节点的意义是作为一个 client(客户端)节点,主要是针对海量请求的时候可以进行负载均衡
总结
默认情况下,每个节点都有成为主节点的资格,也会存储数据,还会处理客户端的请求。在一个生产集群中我们可以对这些节点的职责进行划分。
建议集群中设置 3台 以上的节点作为 master 节点【node.master: true node.data: false】,这些节点只负责成为主节点,维护整个集群的状态。
再根据数据量设置一批 data节点【node.master: false node.data: true】,这些节点只负责存储数据,后期提供建立索引和查询索引的服务,这样的话如果用户请求比较频繁,这些节点的压力也会比较大
所以在集群中建议再设置一批 client节点【node.master: false node.data: true】,这些节点只负责处理用户请求,实现请求转发,负载均衡等功能。
master节点:普通服务器即可(CPU 内存 消耗一般)
data 节点:主要消耗磁盘,内存
client 节点:普通服务器即可(如果要进行分组聚合操作的话,建议这个节点内存也分配多一点)