SPOJ 1811LCS Longest Common Substring

后缀自动机裸题....

Longest Common Substring

Time Limit: 2000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

[Submit]  
[Go Back]   [Status]

Description

A string is finite sequence of characters over a non-empty finite set Σ.

In this problem, Σ is the set of lowercase letters.

Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.

Now your task is simple, for two given strings, find the length of the longest common substring of them.

Here common substring means a substring of two or more strings.

Input

The input contains exactly two lines, each line consists of no more than 250000 lowercase letters, representing a string.

Output

The length of the longest common substring. If such string doesn‘t exist, print "0" instead.

Example

Input: alsdfkjfjkdsal
fdjskalajfkdsla Output: 3

Notice: new testcases added

Source

[Submit]  
[Go Back]   [Status]

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int CHAR=26,maxn=251000;

struct SAM_Node
{
    SAM_Node *fa,*next[CHAR];
    int len,id,pos;
    SAM_Node(){}
    SAM_Node(int _len)
    {
        fa=0; len=_len;
        memset(next,0,sizeof(next));
    }
};

SAM_Node SAM_node[maxn*2],*SAM_root,*SAM_last;
int SAM_size;

SAM_Node *newSAM_Node(int len)
{
    SAM_node[SAM_size]=SAM_Node(len);
    SAM_node[SAM_size].id=SAM_size;
    return &SAM_node[SAM_size++];
}

SAM_Node *newSAM_Node(SAM_Node *p)
{
    SAM_node[SAM_size]=*p;
    SAM_node[SAM_size].id=SAM_size;
    return &SAM_node[SAM_size++];
}

void SAM_init()
{
    SAM_size=0;
    SAM_root=SAM_last=newSAM_Node(0);
    SAM_node[0].pos=0;
}

void SAM_add(int x,int len)
{
    SAM_Node *p=SAM_last,*np=newSAM_Node(p->len+1);
    np->pos=len;SAM_last=np;
    for(;p&&!p->next[x];p=p->fa)
        p->next[x]=np;
    if(!p)
    {
        np->fa=SAM_root;
        return ;
    }
    SAM_Node *q=p->next[x];
    if(q->len==p->len+1)
    {
        np->fa=q;
        return ;
    }
    SAM_Node *nq=newSAM_Node(q);
    nq->len=p->len+1;
    q->fa=nq; np->fa=nq;
    for(;p&&p->next[x]==q;p=p->fa)
        p->next[x]=nq;
}

void SAM_build(char *s)
{
    SAM_init();
    int len=strlen(s);
    for(int i=0;i<len;i++)
        SAM_add(s[i]-'a',i+1);
}

char A[maxn],B[maxn];

int main()
{
    scanf("%s%s",A,B);
    SAM_build(A);
    int m=strlen(B),ans=0,temp=0;
    SAM_Node *now=SAM_root;
    for(int i=0;i<m;i++)
    {
        int c=B[i]-'a';
        if(now->next[c])
        {
            now=now->next[c];
            temp++;
        }
        else
        {
            while(now&&!now->next[c])
                now=now->fa;
            if(now)
            {
                temp=now->len+1;
                now=now->next[c];
            }
            else
            {
                temp=0;
                now=SAM_root;
            }
        }
        ans=max(ans,temp);
    }
    printf("%d\n",ans);
    return 0;
}

SPOJ 1811LCS Longest Common Substring

时间: 2024-10-07 04:57:07

SPOJ 1811LCS Longest Common Substring的相关文章

【SPOJ】Longest Common Substring II (后缀自动机)

[SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记录\(f[i]\)表示走到了\(i\)节点 能够匹配上的最长公共子串的长度 当然,每个串的\(f[i]\)可以更新\(f[i.parent]\) 所以需要拓扑排序 对于每个串求出每个节点的最长匹配 然后对他们取\(min\),表示某个节点大家都能匹配的最长长度 最后对于所有点的值都取个\(max\)

【SPOJ】Longest Common Substring(后缀自动机)

[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另外一个串在\(SAM\)上不断匹配 最后计算答案就好了 匹配方法: 如果\(trans(s,c)\)存在 直接沿着\(trans\)走就行,同时\(cnt++\) 否则沿着\(parent\)往上跳 如果存在\(trans(now,c),cnt=now.longest+1\) 否则,如果不存在可行的

【SPOJ】Longest Common Substring

[SPOJ]Longest Common Substring 求两个字符串的最长公共子串 对一个串建好后缀自动机然后暴力跑一下 废话 讲一下怎么跑吧 从第一个字符开始遍历,遍历不到了再沿着\(parents\)走看能否找到出路,走到某个点时,统计一下走过了多少点然后更新答案 来说说这样做的正确性: 遍历是肯定的, PAM 从根节点出发的任意路径都表示一个子串 沿着\(parents\)边往后走,保证贪心情况下维护最长公共子串寻找出路 注意这里是统计走过了多少点更新答案,不能直接通过\(len\)

【SPOJ】Longest Common Substring II

[SPOJ]Longest Common Substring II 多个字符串求最长公共子串 还是将一个子串建SAM,其他字符串全部跑一边,记录每个点的最大贡献 由于是所有串,要对每个点每个字符串跑完后去最小值才是每个点的最终贡献 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm

后缀自动机(SAM) :SPOJ LCS - Longest Common Substring

LCS - Longest Common Substring no tags A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the set of lowercase letters. Substring, also called factor, is a consecutive sequence of characters occurrences at

Spoj LCS2 - Longest Common Substring II

题目描述 A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the set of lowercase letters. Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string. Now your t

SPOJ 1812 Longest Common Substring II(后缀自动机)

[题目链接] http://www.spoj.com/problems/LCS2/ [题目大意] 求n个串的最长公共子串 [题解] 对一个串建立后缀自动机,剩余的串在上面跑,保存匹配每个状态的最小值, 取最小值中的最大值即可.由于跑的地方只记录了匹配结尾的状态, 所以还需要更新parent树上的状态,既然匹配到了子节点, 那么parent树链上的值就都能够取到l, 一开始给每个不同状态按照l从小到大分配储存地址, 这样,我们就可以从匹配长度最长的开始更新parent树的情况. [代码] #inc

SPOJ 1812 Longest Common Substring II

http://www.spoj.com/problems/LCS2/ 题意: 求10个串的LCS 1.用第一个串建立后缀自动机 2.len[s] 表示状态s 所能代表的字符串的最大长度 mx[s] 表示状态s 在 当前匹配的串的最长匹配后缀长度 ans[s] 表示状态s 在所有串的最长匹配后缀长度 3.用第2——第10个串在后缀自动机上跑,每次mx[s]=max(mx[s],当前匹配长度) 每一个串跑完之后,更新 ans[s]=min(ans[s],mx[s]) 4.每次匹配完一个字符串的时候,

SPOJ LCS2 - Longest Common Substring II 字符串 SAM

原文链接http://www.cnblogs.com/zhouzhendong/p/8982484.html 题目传送门 - SPOJ LCS2 题意 求若干$(若干<10)$个字符串的最长公共连续子串长度. 串长$\leq 100000$ 题解 建议在做本题之前,先去做SPOJ LCS,本题是其升级版. 题解链接 - SPOJ LCS - http://www.cnblogs.com/zhouzhendong/p/8982392.html 对于本题,我们只需要保持一下之后每一个串在第一个串的$