Red and Black
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11542 Accepted Submission(s): 7185
Problem Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can‘t
move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are
not more than 20.
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
‘.‘ - a black tile
‘#‘ - a red tile
‘@‘ - a man on a black tile(appears exactly once in a data set)
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9 ....#. .....# ...... ...... ...... ...... ...... #@...# .#..#. 11 9 .#......... .#.#######. .#.#.....#. .#.#.###.#. .#.#[email protected]#.#. .#.#####.#. .#.......#. .#########. ........... 11 6 ..#..#..#.. ..#..#..#.. ..#..#..### ..#..#..#@. ..#..#..#.. ..#..#..#.. 7 7 ..#.#.. ..#.#.. ###.### [email protected] ###.### ..#.#.. ..#.#.. 0 0
Sample Output
45 59 6 13
解题思路
这是一道最基础的深搜,也是朋友教给我的,以前都是不懂。
深搜就是从一个点向上下左右四个方向拓展,然后再以拓展的点为基础向上下左右拓展判断。
所以需要两个数组,bianx[4]和biany[4]来存储x和y的对应变化,一定要注意x、y的变话要对照。
然后还需要判断地点有意义,即在范围之内1<=x<=n&&1<=y<=m
解题代码
#include<cstdio> #include<cstring> #include<iostream>// using namespace std;//C++要加这两个头文件 char map[22][22]; int bx[5]={0,1,0,-1}; int by[5]={1,0,-1,0}; int sum; int n,m; bool judge(int a,int b) { if(a<1||a>m||b<1||b>n) return false; else { if(map[a][b]!='#') return true; else return false; } } void dfs(int a,int b) { int i; int nowa,nowb; sum++; map[a][b]='#'; for(i=0;i<4;i++) {//对定点进行上下左右四种变化 nowa=a+bx[i]; nowb=b+by[i]; if(judge(nowa,nowb)) dfs(nowa,nowb); //直接递归调用就好 else continue; } } int main() { //int n,m; int i,j,k; int stax,stay; while(scanf("%d%d",&n,&m),n+m) { memset(map,0,sizeof(map)); for(i=1;i<=m;i++) for(j=1;j<=n;j++) { cin>>map[i][j]; if(map[i][j]=='@') { stax=i; stay=j; } } sum=0; dfs(stax,stay); cout<<sum<<endl; //若输出需要换行,则加上<<endl } return 0; }