线性规划与网络流24题 索引

线性规划与网络流24题 索引的相关文章

题解:线性规划与网络流24题 T2 太空飞行计划问题

太空飞行计划问题 问题描述 W教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,-,Em},和进行这些实验需要使用的全部仪器的集合I={I1,I2,-In}.实验Ej 需要用到的仪器是I的子集Rj ∈ I.配置仪器Ik的费用为ck美元.实验Ej 的赞助商已同意为该实验结果支付pj 美元.W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大.这里净收

线性规划与网络流24题第2题 太空飞行计划 最小割

/** 题目: 线性规划与网络流24题第2题 太空飞行计划 最小割 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=727 题意:lv 思路:最大点权独立集(点集中任意两个点没有边相连,且点权和最大)=点权总和-最小点权覆盖集. 将实验和仪器看做节点. 实验放在二分图的左边, s->x, cap = 实验利润. 仪器放在右边, x->t, cap = 仪器费用. 如果实验u的进行需要仪器v,u->v, cap = INF. ans

【线性规划与网络流 24题】完成度(1/24)

PS:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1.飞行员配对方案问题 2016-04-11 二分图最大匹配问题,更新了一下$Dinic$模板,带上了当前弧优化和多路增广.这道题输出方案有很多种,可是没有special judge,所以没有A,但方案数是对的.合法的输出方案只能用匈牙利算法解决. #include<queue> #include<

【线性规划与网络流24题】汽车加油行驶问题 分层图

汽车加油行驶问题 Time Limit: 1 Sec  Memory Limit: 128 MB Description 给定一个 N*N的方形网格,设其左上角为起点◎,坐标为( 1,1),X轴向右为正, Y轴向下为正,每一个方格边长为 1,如图所看到的.一辆汽车从起点◎出发驶向右下角终点▲,其坐标为( N,N).在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油.汽车在行驶过程中应遵守例如以下规则: (1)汽车仅仅能沿网格边行驶,装满油后能行驶 K条网格边.出发时汽车已装满油,在起点与终

【线性规划与网络流24题】孤岛营救问题 分层图

孤岛营救问题 Time Limit: 1 Sec  Memory Limit: 128 MB Description 1944年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图.迷宫的外形是一个长方形,其南北方向被划分为 N行,东西方向被划分为 M列,于是整个迷宫被划分为 N×M个单元.每一个单元的位置可用一个有序数对 (单元的行号,单元的列号)来表示.南北或东西方向相邻的 2个单元之间可能

【巨坑】【网络流】线性规划与网络流24题

2016.2.21 01.飞行员配对方案问题(习题 8-10) 每一条边连接外籍-国内飞行员,显然是一个二分图,最多出发的飞机数,对应着最多的边匹配. 问题转化为经典的二分图匹配问题,可以用匈牙利或者网络流. 源点和每一个外籍飞行员.每一个国内飞行员和汇点.每个可行的配合之间连接一条容量为1的有向边. 可以派出的最多飞机数就是这个网络的最大流 建图部分代码 1 for(;;){ 2 int a,b,c; 3 a=read();b=read(); 4 if(a==-1&&b==-1) bre

线性规划与网络流24题

诈个尸. 1.飞行员配对方案问题 二分图匹配. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <queue> 6 using namespace std; 7 const int INF = 1e9; 8 const int maxn = 2e5 + 10; 9 int lv[maxn], it[ma

线性规划与网络流24题●09方格取数问题&amp;13星际转移问题

●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为"技术"不佳,搞了一上午) ●09方格取数问题(codevs1907  方格取数3) 想了半天,也没成功建好图: 无奈下参考题解,说是本题要求二分图点权最大独立集,然后可以由结论:"最大点权独立集 = 所有点权 - 最小点权覆盖集 = 所有点权 - 最小割集 = 所有点权 - 网络最大流"转化到求最大流(我真的很懵逼,但又感觉很有道理): 下面附上solution:(自己领悟吧) (不懂

【线性规划与网络流24题】8-11 航空路线问题

Description 给定一张航空图,图中顶点代表城市,边代表2城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. (1)从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市). (2)除起点城市外,任何城市只能访问1次. 对于给定的航空图,试设计一个算法找出一条满足要求的最佳航空旅行路线. Input Format 第1 行有2个正整数N 和V,N 表示城市数,N<100,V 表示直飞航线数.接下来的N行中每一行是一个